впиши пропущенные числа так чтобы число в нижнем квадрате было равно сумме чисел верхних квадратов
Как решить магический квадрат: учимся решать одну из древнейших задач
Магический квадрат представляет собой квадратную таблицу с числами, построенную так, что сумма чисел в каждой строке, каждом столбце и в каждой диагонали равна одному и тому же числу (магическая сумма). Магические квадраты бывают разных порядков — порядок квадрата определяет число столбцов/строк. Как рассчитать и решать магические квадраты?
История
Археологи нашли свидетельства того, что волшебные таблицы были известны еще древним грекам и китайцам. «Магическими» эти фигуры назвали арабы, которые наделяли их сверхъестественными защитными свойствами.
В середине XVI в. европейские математики занялись исследованиями загадочных таблиц, положив начало их новой жизни. Они искали общий метод построения магических квадратов и пытались описать все возможные их варианты.
На уроках математики в школе
Решение магических квадратов на уроках математики и внеклассных занятиях вызывает интерес, способствует развитию мышления. Дети учатся планировать и контролировать свою работу. В клетки магических квадратов можно записывать не только числа, но и выражения. Все зависит от изучаемой темы. Задания с магическими квадратами часто дают как дополнительные или олимпиадные уже в начальной школе.
Один из способов решения магического квадрата
Нетрудно решить магический квадрат третьего порядка (у которого по три столбца и строки). Можно воспользоваться тем фактом, что число (выражение), стоящее на пересечении его диагоналей, всегда равно ⅓ волшебной суммы. Отсюда следует алгоритм построения:
Смотрите также:
Как рассчитать магический квадрат Пифагора самому?
Пифагор — математик, заложивший основы нумерологии. Ученый верил, что миром правят числа. Даже человеческая сущность зависит от них, ведь дата рождения не что иное, как число.
Магический квадрат Пифагора — фигура третьего порядка, клетки которой заполнены числами от 1 до 9. Он делится на 3 уровня: материальный, души и разума.
Цифры даты рождения вписываются в определенном порядке. Полученная комбинация рассказывает о заложенных природой способностях человека.
Материал может быть использован на занятии математического кружка, на внеклассном мероприятии. Цель — развить и расширить познавательный кругозор и логическое мышление.
Решаем магический квадрат Пифагора: пример
Дата рождения: 17.09.2005 г. Складываем эти цифры, не учитывая нули: 1 + 7 + 9 + 2 + 5 = 24. Аналогично поступаем с цифрами результата: 2 + 4 = 6.
Цифры вписываем в магический квадрат так, чтобы все единицы оказались в первой клеточке, двойки — во второй и так далее. Нули не учитываем.
Клетка 1 – волевые качества, эгоизм.
Очень эгоистичные люди.
Эгоизм — яркая, но не преобладающая черта характера.
Спокойные, покладистые люди.
Сильный, волевой человек.
Люди с замашками диктатора.
Клетка 2 — биоэнергетика.
Воспитанность, природное благородство.
Люди с повышенной чувствительностью к атмосферным изменениям.
Человек с хорошим запасом биоэнергетики.
Клетка 3 — организованность, любовь к точности, конкретности, скрупулезность, скупость.
Чем больше троек, тем сильнее выражены вышеперечисленные качества.
Клетка 4 — здоровье.
Среднее, требуется закаливание.
Очень крепкое здоровье.
Клетка 5 — интуиция, экстрасенсорные способности
Чем больше пятерок, тем более выражена связь с космосом.
Клетка 6 — материализм.
Люди с неординарным воображением, которым необходим физический труд.
Могут посвятить время и творчеству, и точным наукам. Физические нагрузки обязательны.
Заземленные личности, тянущиеся к физическому труду.
Очень много заземленности.
Чем больше семерок, тем талантливее человек.
Клетка 8 — судьба, отношение к обязанностям.
Люди, которые всегда спешат помочь другим.
Признак служения народу.
Клетка 9 — умственные способности
Полное отсутствие девяток означает очень низкий уровень умственной деятельности. Чем больше количество девяток, тем умнее человек.
Задачи на составление магических квадратов часто включаются в сборники нестандартных заданий. Они встречаются на олимпиадах. Увлеченным математикой школьникам будет полезно узнать об этом классе задач.
Об авторе: Филиппова Оксана, учитель математики, физики и информатики.
Спасибо за Вашу оценку. Если хотите, чтобы Ваше имя
стало известно автору, войдите на сайт как пользователь
и нажмите Спасибо еще раз. Ваше имя появится на этой стрнице.
Понравился материал?
Хотите прочитать позже?
Сохраните на своей стене и
поделитесь с друзьями
Вы можете разместить на своём сайте анонс статьи со ссылкой на её полный текст
Ошибка в тексте? Мы очень сожалеем,
что допустили ее. Пожалуйста, выделите ее
и нажмите на клавиатуре CTRL + ENTER.
Кстати, такая возможность есть
на всех страницах нашего сайта
Девиз: поднемите руки выше!
по
2007-2021 «Педагогическое сообщество Екатерины Пашковой — PEDSOVET.SU».
12+ Свидетельство о регистрации СМИ: Эл №ФС77-41726 от 20.08.2010 г. Выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций.
Адрес редакции: 603111, г. Нижний Новгород, ул. Раевского 15-45
Адрес учредителя: 603111, г. Нижний Новгород, ул. Раевского 15-45
Учредитель, главный редактор: Пашкова Екатерина Ивановна
Контакты: +7-920-0-777-397, info@pedsovet.su
Домен: https://pedsovet.su/
Копирование материалов сайта строго запрещено, регулярно отслеживается и преследуется по закону.
Отправляя материал на сайт, автор безвозмездно, без требования авторского вознаграждения, передает редакции права на использование материалов в коммерческих или некоммерческих целях, в частности, право на воспроизведение, публичный показ, перевод и переработку произведения, доведение до всеобщего сведения — в соотв. с ГК РФ. (ст. 1270 и др.). См. также Правила публикации конкретного типа материала. Мнение редакции может не совпадать с точкой зрения авторов.
Для подтверждения подлинности выданных сайтом документов сделайте запрос в редакцию.
Мы используем cookie.
Публикуя материалы на сайте (комментарии, статьи, разработки и др.), пользователи берут на себя всю ответственность за содержание материалов и разрешение любых спорных вопросов с третьми лицами.
При этом редакция сайта готова оказывать всяческую поддержку как в публикации, так и других вопросах.
Если вы обнаружили, что на нашем сайте незаконно используются материалы, сообщите администратору — материалы будут удалены.
История и современное применение
Первые подобные таблицы использовались ещё в Древней Греции и Китае. Это подтверждено археологическими находками. Арабы называли квадраты магическими, так как верили, что они обладают волшебными свойствами и могут защитить от многих напастей.
В середине XVI в. вопросом о том, как работает магический квадрат, заинтересовались математики в Европе. Они начали активно исследовать загадочные сочетания цифр. Учёные стремились вывести общие принципы построения квадратов и найти всё множество возможных вариантов.
В современной общеобразовательной школе разные виды магических квадратов используются на уроках математики. Они способствуют развитию логического мышления и вызывают у детей живой интерес.
С их помощью школьники учатся планировать свою работу и контролировать её. В клетки можно вписывать не только отдельные цифры, но и математические выражения. Задачи на эту тему часто предлагаются на математических олимпиадах. Решать такие числовые задачи можно и онлайн.
Квадрат нечётного порядка
Среди несложных магических квадратов по математике выделяют разновидности чётного и нечётного порядка. Первая группа подразделяется на таблицы одинарной и двойной чётности.
Начальным шагом во всех случаях будет определение магической константы. Делается это с помощью специальной формулы [n * (n2 + 1)] / 2. Разобраться с принципом решения задачи этого класса можно на самом простом примере. Для этого выстраивается таблица из 9 ячеек. В неё нужно расставить цифры от 1 до 9. Дальнейший алгоритм:
Общий алгоритм выполнения задания: каждый следующий знак пишется вверх и правее. Если там нет клетки — дорисовывается ещё один воображаемый квадрат. Если ячейка занята — число записывается ниже предыдущего. Таким способом можно составить любой квадрат нечётного порядка, включая самые сложные, с больши́м числом ячеек.
Одинарная чётность
Магические квадраты могут иметь порядок одинарной или двойной чётности. Для каждого случая предусмотрена отдельная методика вычисления. У таблиц одинарной чётности количество клеток в одной строке или столбце делится пополам, но не делится на четыре. Наименьшим квадратом, отвечающим этому требованию, будет прямоугольник 6х6. Фигуру 2х2 построить и заполнить невозможно.
Вычисление магической константы
Первый этап расчётов проводится по формуле [n * (n2 + 1)] / 2, где символом n обозначено число клеток в одном ряду. Если взять за пример квадрат 6х6, расчёт будет выглядеть следующим образом: [6 х (36 + 1)]: 2 = (6 х 37): 2 = 222:2.
Волшебная постоянная прямоугольника со стороной 6 клеток равна 111. Общая сумма чисел от 1 до 36 в каждой строке и в разных направлениях должна быть равна 111.
Рисунок делится на 4 одинаковые части. В каждой будет по 9 клеток (3х3). Каждую часть обозначают латинскими буквами: А — верхняя левая, С — верхняя правая, D — нижняя левая и В — нижняя правая часть. Если квадрат имеет другой размер, n делится на 2, чтобы узнать точную величину каждой из 4 частей.
Дальнейшие действия
Следующий шаг — вписывание в каждую часть ¼ всех чисел. В квадрант А вносятся числа от 1 до 9, в квадрант В — от 10 до 18, в части С — от 19 до 27, в D — от 28 до 36.
Последовательность вписывания такая же, как при заполнении простейшего нечётного квадрата:
В блоках А и D на этой стадии решения сумма в строках и столбиках будет отличаться от постоянной. Чтобы это исправить, некоторые числа меняют местами между собой.
Алгоритм действий:
Цифры, которые были вписаны в выделенных треугольниках А и D, нужно поменять между собой местами. После этого сумма в каждой строке должна быть одинаковой. Она равняется вычисленной магической константе.
Двойной порядок
Если головоломка имеет порядок двойной чётности, количество окон в каждой горизонтальной строчке или вертикальном столбце должно делиться на 4. Минимальной фигурой с такими свойствами будет таблица 4х4.
Решать магические квадраты двойной чётности следует по тому же алгоритму, что и остальные. Первый шаг при заполнении — вычисление магической константы. Формула применяется та же, что для расчёта других квадратов. Для фигуры со стороной 4 клетки значение константы будет равно 34.
В каждом углу основного поля выделяются промежуточные таблицы. Их размер должен быть равен n/4. Эти области обозначают буквами A, B, C, D, располагая их против хода часовой стрелки. Величина промежуточных фигур зависит от размера исходного квадрата:
Следующий этап — создание центрального промежуточного квадрата. Величина его стороны должна составлять n/2. Эта фигура не должна накладываться на периферические, но при этом соприкасаться с ними углами.
Далее в квадрат вносят цифры слева направо. Их допускается ставить только в свободные ячейки, которые входят в состав промежуточных областей. Например, при заполнении таблицы 4х4 порядок действий будет таким:
По этому же принципу цифрами заполняются оставшиеся клетки. Числа проставляются слева в порядке уменьшения. Если всё сделано верно, сумма всех чисел в любой строчке будет одинаковой.
В пустые клетки квадрата Запиши такие числа Чтобы квадрат стал магическим суммы чисел чисел в строках и столбцах и диагонали равны затем Найди сумму всех вписанных чисел это узнает В каком году случил?
В пустые клетки квадрата Запиши такие числа Чтобы квадрат стал магическим суммы чисел чисел в строках и столбцах и диагонали равны затем Найди сумму всех вписанных чисел это узнает В каком году случилась описанные события в каком веке это было 395 * 59 371.
131 + 323 + 203 + 155 + 299 + 419 + 83 = 1613
избрать нового царя.
посольство, прибывшее туда в марте
Романова (правил до 1645) ; началодинастии Романовых(до 1917).
на Калугу, Можайск и Тулу.
Запиши в пустые клетки числа от 1 до 9 так чтобы сумма чисел в каждом столбце и строке были равны числам 12, 13, 14 соответственно?
Запиши в пустые клетки числа от 1 до 9 так чтобы сумма чисел в каждом столбце и строке были равны числам 12, 13, 14 соответственно.
В кружках записана сумма чисел в каждой строке, столбце и с угла на угол.
В каждую клетку квадрата 3х3 записано целое число?
В каждую клетку квадрата 3х3 записано целое число.
При этом сумма чисел в каждом столбце, кроме первого, в 4 раза больше, чем в предыдущем.
Сумма чисел в каждой строке, кроме первой, на 1 больше, чем в предыдущей, а в одной из строк сумма чисел составляет 2008.
Найти сумму чисел в первом столбце.
Заполните магические квадраты?
Заполните магические квадраты.
В кружках записана сумма чисел в каждой строке, столбце и с угла на угол.
Вставь в пустые клетки квадрата числа так чтобы квадрат стал магическим сумма составляла 21?
Вставь в пустые клетки квадрата числа так чтобы квадрат стал магическим сумма составляла 21.
Вставь в пусты клетки квадрата числа так чтобы квадрат стал магическим а сумма составила 21?
Вставь в пусты клетки квадрата числа так чтобы квадрат стал магическим а сумма составила 21.
В 9 клетках квадрата стоят числа от 1 до 9?
В 9 клетках квадрата стоят числа от 1 до 9.
Сумма чисел в первой строке равна 11, сумма чисел во второй строке равна 10.
Какие числа записаны в третьей строке?
Эмили хочет вписать в клетки квадрата 3×3 числа так, чтобы сумма чисел в любых двух соседних (имеющих общую сторону) клетках была одинаковой?
Эмили хочет вписать в клетки квадрата 3×3 числа так, чтобы сумма чисел в любых двух соседних (имеющих общую сторону) клетках была одинаковой.
Два числа уже вписаны.
Какой будет сумма всех чисел в таблице.
Впишите в пустые клетки магического квадрата цифры 2 3 4 6 7 9 (в магическом квадрате сумма В каждой строке и в каждом столбце и в каждой диагонали должны быть одинаковыми) Запишите решение и ответ?
Впишите в пустые клетки магического квадрата цифры 2 3 4 6 7 9 (в магическом квадрате сумма В каждой строке и в каждом столбце и в каждой диагонали должны быть одинаковыми) Запишите решение и ответ.
Впиши числа в пустые клетки чтобы вдоль сторон квадрата сумма чисел была равна 10_________↑_↑__↑_↑↑_↑10↑_↑↑_↑__↑_↑?
Впиши числа в пустые клетки чтобы вдоль сторон квадрата сумма чисел была равна 10
80 : 2 = 40 градусов, т. К. Вертикальные углы равны.
1) 40200 2) 35451 3) 573256 4) 2360083 1) (228 + 772) + 453 = 1000 + 453 = 1453 2) (382 + 618) + 5439 = 1000 + 5439 = 6439 3)(164 + 236) + (237 + 363) = 400 + 500 = 900 4)(12078 + 6922) + (1485 + 3515) = 19000 + 5000 = 24000.
Биссектриса равностороннего треугольника является и высотой и медианой. Биссектриса разделила основание пополам ( см. Рисунок) Обозначим сторону треугольника х По теореме Пифагора х² = (х / 2)² + (9√3)² 3х² / 4 = 243 х² = 324 х = 18.
- впиши начальную форму выделенного существительного вот так человек изобрел бутерброд начальная форма
- впишите вместо звездочек шесть различных цифр так чтобы все дроби были несократимыми
|