воды так много вокруг нас
Тест. Домашняя работа по русскому языку в формате ОГЭ 9 класс.
Ищем педагогов в команду «Инфоурок»
1. Воды так много вокруг нас, что редко кто знает, как остро стоит вопрос об этом источнике жизни даже в нашей изобильной водами стране и как тщательно надо беречь это ценнейшее достояние народа. 2.Даже в тех районах, где осадков и водных источников на первый взгляд совершенно достаточно.
3.Нет в мире страны, которая могла бы сравниться с нами водными богатствами.
4. Влаги, несомой нашими реками, с избытком хватило бы для обеспечения всех потребностей населения и хозяйства нашей страны на любой срок. 5. Но беда в том, что наши водные ресурсы распределены крайне неравномерно. 6. Нередки случаи, когда город или промышленный центр стоит на берегу большого водоёма, а пользоваться им почти невозможно. 7. Это водоём, как говорят гидрологи, «мёртвый», то есть до отказа загрязнённый и отравленный сточными водами. 8. К величайшему сожалению, таких «мёртвых» водоёмов у нас очень много. 9. И если не принять необходимых мер, то этот мутный поток отравленной воды увеличится.
10.Такому отношению к достоянию народа должен быть положен конец. 11. Оберегать водоёмы — долг каждого из нас!
1. Из предложений 7-8 выпишите эпитет.
2. Среди предложений 5-7 найдите и выпишите слово, в котором правописание приставки зависит от звонкости первой согласной корня.
3. Среди предложений 6-7 найдите и выпишите слово, правописание суффикса которого объясняется правилом «В суффиксах полных страдательных причастий пишется две Н».
4. Выпишите грамматическую основу предложения 3.
5. Укажите количество грамматических основ предложения 1
6. Запишите синоним к слову ДОЛГ (11 предложение).
7. Замените словосочетание ИСТОЧНИКЕ ЖИЗНИ, выраженное управлением на согласование.
8. Среди предложений 1-3 найдите и укажите номер предложения с однородным и последовательным подчинением придаточных.
9. Среди предложений 4-6 выпишите номер предложения с обособленным определением.
Среди предложений 7-9 выпишите номера предложений с вводным словом.
1.Последний день перед Рождеством прошел, и наступила зимняя ясная ночь. 2. Глянули звезды, и месяц величаво поднялся на небо запросто посветить добрым людям и всему миру, чтобы всем было весело колядовать и славить Христа. 3. Морозило сильнее, чем с утра, но было так тихо, что скрип мороза под сапогом слышался за полверсты. 4. Еще ни одна толпа парубков не показывалась под окнами хат. 5. Месяц один только заглядывал в них украдкою, как бы вызывая принаряживавшихся девушек выбежать скорее на скрипучий снег. 6. Через трубу одной хаты клубами повалился дым и пошел тучею по небу. 7. Вместе с дымом поднялась ведьма верхом на метле.
8. А ведьма между тем поднялась так высоко, что одним только черным пятнышком мелькнула вверху.
Из предложений 1-3 выпишите гиперболу.
Среди предложений 5-7 найдите и выпишите слово, в котором правописание приставки зависит отзначения.
Среди предложений 1-3 найдите и выпишите слово, правописание суффикса в котором зависит от приставки.
Выпишите грамматическую основу предложения 3.
Укажите количество грамматических основ предложения 2.
Запишите синоним к слову СЛАВИТЬ ( 2 предложение)
Замените словосочетание СКРИП МОРОЗА, выраженное управлением, на согласование.
Среди предложений 5-9 найдите и укажите номер предложения с союзной подчинительной и союзной сочинительной связью.
Среди предложений 5-7 выпишите номер предложения с обособленным обстоятельством.
Школе NET
Register
Do you already have an account? Login
Login
Don’t you have an account yet? Register
Newsletter
Submit to our newsletter to receive exclusive stories delivered to you inbox!
Энджелл
Ответьте на вопросы по содержанию текста с помощью сложноподчиненных предложений. Укажите вид придаточного.
Воды так много вокруг нас, что редко кто знает, как остро стоит вопрос об этом источнике жизни даже в нашей изобильной водами стране и как тщательно надо беречь это ценнейшее достояние народа. Даже в тех районах, где осадков и водных источников на первый взгляд совершенно достаточно. Нет в мире страны, которая могла бы сравниться с нами водными богатствами.
Влаги, несомой нашими реками, с избытком хватило бы для обеспечения всех потребностей населения и хозяйства нашей страны на любой срок. Но беда в том, что наши водные ресурсы распределены крайне неравномерно. Нередки случаи, когда город или промышленный центр стоит на берегу большого водоёма, а пользоваться им почти невозможно. Это водоём, как говорят гидрологи, «мёртвый», то есть до отказа загрязнённый и отравленный сточными водами. К величайшему сожалению, таких «мёртвых» водоёмов у нас очень много. И если не принять необходимых мер, то этот мутный поток отравленной воды увеличится. Такому отношению к достоянию народа должен быть положен конец. Оберегать водоёмы — долг каждого из нас!
1. Почему воду надо оберегать даже там, где её достаточно?
2. Почему появляются «мёртвые» водоёмы?
Лучший ответ:
Таня Масян
1. В один момент, воды может быть не так уж достаточно, и если человек не будет хорошо относиться с живой природе, то в скором времени мир погрязнет в халатности
Ответьте на вопросы по содержанию текста с помощью сложноподчиненных предложений. Укажите вид придаточного.
Воды так много вокруг нас, что редко кто знает, как остро стоит вопрос об этом источнике жизни даже в нашей изобильной водами стране и как тщательно надо беречь это ценнейшее достояние народа. Даже в тех районах, где осадков и водных источников на первый взгляд совершенно достаточно. Нет в мире страны, которая могла бы сравниться с нами водными богатствами.
Влаги, несомой нашими реками, с избытком хватило бы для обеспечения всех потребностей населения и хозяйства нашей страны на любой срок. Но беда в том, что наши водные ресурсы распределены крайне неравномерно. Нередки случаи, когда город или промышленный центр стоит на берегу большого водоёма, а пользоваться им почти невозможно. Это водоём, как говорят гидрологи, «мёртвый», то есть до отказа загрязнённый и отравленный сточными водами. К величайшему сожалению, таких «мёртвых» водоёмов у нас очень много. И если не принять необходимых мер, то этот мутный поток отравленной воды увеличится. Такому отношению к достоянию народа должен быть положен конец. Оберегать водоёмы — долг каждого из нас!
1. Почему воду надо оберегать даже там, где её достаточно?
2. Почему появляются «мёртвые» водоёмы?
Уравнение, изобретение, сомнение,черчение, вероисповедание, желание,отношение,сложение,вычитание,мнение,участие,лезвие,питание,жжение,зрение,обилие,рвение,ржание,сияние
стадия,утопия,геометрия,химия,агония,анатомия,лоджия,лекция,пенсия,партия,премия,прения,амнезия,студия,гадания,гвардия,иллюзия,молния,ламинария,милиция,пародия,партия,станция, события, академия
Загадки простой воды
Вода вокруг нас
Воде принадлежит огромная роль в природе. В самом деле, ведь именно море явилось первой ареной жизни на Земле. Растворенные в морской воде аммиак и углеводы в контакте с некоторыми минералами при достаточно высоком давлении и воздействии мощных электрических разрядов могли обеспечить образование белковых веществ, на основе которых в дальнейшем возникли простейшие организмы. По мнению К.Э. Циолковского, водная среда способствовала предохранению хрупких и несовершенных вначале организмов от механического повреждения. Суша и атмосфера стали впоследствии второй ареной жизни.
Можно сказать, что все живое состоит из воды и органических веществ. Без воды человек, например, мог бы прожить не более 2. 3 дней, без питательных же веществ он может жить несколько недель. Для обеспечения нормального существования человек должен вводить в организм воды примерно в 2 раза больше по весу, чем питательных веществ. Потеря организмом человека более 10% воды может привести к смерти. В среднем в организме растений и животных содержится более 50% воды, в теле медузы ее до 96, в водорослях 95. 99, в спорах и семенах от 7 до 15%. В почве находится не менее 20% воды, в организме же человека вода составляет около 65% (в теле новорожденного до 75, у взрослого 60%). Разные части человеческого организма содержат неодинаковое количество воды: стекловидное тело глаза состоит из воды на 99%, в крови ее содержится 83, в жировой ткани 29, в скелете 22 и даже в зубной эмали 0,2%.
В первичной водной оболочке земного шара воды было гораздо меньше, чем теперь (не более 10% от общего количества воды в водоемах и реках в настоящее время). Дополнительное количество воды появилось впоследствии в результате освобождения воды, входящей в состав земных недр. По расчетам специалистов, в составе мантии Земли воды содержится в 10. 12 раз больше, чем в Мировом океане. При средней глубине в 4 км Мировой океан покрывает около 71% поверхности планеты и содержит 97,6% известных нам мировых запасов свободной воды. Реки и озера содержат 0,3% мировых запасов свободной воды.
Большими хранилищами влаги являются и ледники, в них сосредоточено до 2,1% мировых запасов воды. Если бы все ледники растаяли, то уровень воды на Земле поднялся бы на 64 м и около 1/8 поверхности суши было бы затоплено водой. В эпоху оледенения Европы, Канады и Сибири толщина ледяного покрова в горных местностях достигала 2 км. В настоящее время вследствие потепления климата Земли постепенно отступают границы ледников. Это обусловливает медленное повышение уровня воды в океанах.
Около 86% водяного пара поступает в атмосферу за счет испарения с поверхности морей и океанов и только 14% за счет испарения с поверхности суши. В итоге в атмосфере концентрируется 0,0005% общего запаса свободной воды. Количество водяного пара в составе приземного воздуха изменчиво. При особо благоприятных условиях испарения с подстилающей поверхности оно может достигать 2%. Несмотря на это, кинетическая энергия движения воды в морях составляет не более 2% от кинетической энергии воздушных течений. Происходит это потому, что более трети солнечного тепла, поглощаемого Землей, тратится на испарение и переходит в атмосферу. Кроме того, значительное количество энергии поступает в атмосферу за счет поглощения проходящего через нее солнечного излучения и отражения этого излучения от земной поверхности. Прошедшая же через водную поверхность лучистая энергия Солнца и небесного свода уменьшается в интенсивности наполовину уже в верхнем полуметре воды вследствие сильного поглощения в инфракрасной части спектра.
Очень большое значение в жизни природы имеет то обстоятельство, что наибольшая плотность у воды наблюдается при температуре 4°C. При охлаждении пресных водоемов зимой по мере понижения температуры поверхностных слоев более плотные массы воды опускаются вниз, а на их место поднимаются снизу теплые и менее плотные. Так происходит до тех пор, пока вода в глубинных слоях не достигнет температуры 4°C. При этом конвекция прекращается, так как внизу будет находиться более тяжелая вода. Дальнейшее охлаждение воды происходит только с поверхности, чем и объясняется образование льда в поверхностном слое водоемов. Благодаря этому подо льдом не прекращается жизнь.
Вертикальное перемешивание морской воды осуществляется за счет действия ветра, приливов и изменения плотности по высоте. Ветровое перемешивание воды происходит в направлении сверху вниз, приливное – снизу вверх. Плотностное перемешивание возникает за счет охлаждения поверхностных вод. Ветровое и приливное перемешивания распространяются на глубину до 50 м, на больших глубинах может сказываться действие только плотностного перемешивания.
Интенсивность перемешивания придонных и поверхностных вод способствует их освежению, обогащению кислородом и питательными веществами, необходимыми для развития жизни. Растворенный в воде воздух всегда более богат кислородом, чем воздух атмосферный. Имеющийся в воде кислород оказывает благотворное влияние на развитие в ней жизненных процессов. За счет повышенного количества кислорода в растворенном воздухе погруженные в воду металлы усиленно подвергаются разрушению (коррозии).
При замерзании чистая вода расширяется почти на 10%, у морского льда изменение объема происходит на меньшую величину. Поскольку вода при замерзании расширяется, увеличение внешнего давления понижает температуру ее замерзания; температура плавления льда, наоборот, повышается с давлением. В лабораторных условиях при давлении более 40 тыс. атмосфер можно получить лед, который будет плавиться при температуре 175°C. Теплоемкость и теплота плавления льда уменьшаются с температурой, теплопроводность же почти не зависит от температуры. Когда толщина льда на поверхности водоема достигает 15 см, он становится надежным теплоизолятором между водой и воздухом.
Морская вода замерзает при температуре – 1,91°C. При дальнейшем понижении температуры до – 8,2°C начинается осаждение сернокислого натрия, и только при температуре – 23°C из раствора выпадает хлористый натрий. Так как часть рассола при кристаллизации уходит изо льда, соленость его меньше солености морской воды. Многолетний морской лед настолько опресняется, что из него можно получать питьевую воду. Температура максимальной плотности морской воды ниже температуры замерзания. Это является причиной довольно интенсивной конвекции, охватывающей значительную толщу морской воды и затрудняющей замерзание. Теплоемкость морской воды стоит на третьем месте после теплоемкости водорода и жидкого аммиака.
Иногда вода замерзает при положительной температуре. Такое явление наблюдается в трубопроводах и почвенных капиллярах. В трубопроводах вода может замерзнуть при температуре +20°C. Объясняется это присутствием в воде метана. Поскольку молекулы метана занимают примерно в 2 раза больший объем, чем молекулы воды, они «расталкивают» молекулы воды, увеличивают расстояние между ними, что приводит к понижению внутреннего давления и повышению температуры замерзания. В почвенной влаге аналогичную роль выполняют молекулы белка. За счет влияния белковых молекул температура замерзания воды в почвенных капиллярах может возрасти до +4,4°C.
Снежинки, как правило, бывают в виде шести- и двенадцатилучевых звездочек, шестиугольных пластинок, шестигранных призм. При понижении температуры воздуха уменьшаются размеры образующихся кристаллов и возрастает разнообразие их форм. Особенности роста кристаллов в воздухе связаны с наличием в нем водяного пара.
Все знают, что сода в море соленая. Это зависит от концентрации растворенных в ней солей, но не всем известно, что в разных морях и океанах соленость воды неодинакова. Средняя соленость вод океана составляет 35%; соленость морской воды может изменяться от нуля вблизи мест впадения крупных рек до 40% в тропических морях. Вода для питья должна содержать менее 0,05% растворенных солей. Растения погибают при наличии в поливной воде в виде примеси более 0,25% солей.
Существующие в природе жидкости можно разделить на нормальные и ассоциированные. Нормальными называются те жидкости, у которых молекулы не объединяются в группы (ассоциации). Жидкости, не подчиняющиеся этому условию, называются ассоциированными. Вода принадлежит к числу ассоциированных жидкостей. Если бы вода была неассоциированной жидкостью, температура плавления льда в нормальных условиях была бы +1,43°C, а температура кипения воды 103°C. Как правило, теплоемкость жидкостей с температурой растет, но у воды с приближением к температуре +35°C теплоемкость после роста спадает до минимума, а затем снова переходит к монотонному росту. Происходит это из-за того, что при такой температуре разрушаются молекулярные ассоциации. Чем проще молекулярная структура, тем меньше теплоемкость вещества. Температура наибольшей плотности воды понижается с увеличением давления и при давлении 150 атмосфер достигает 0,7°C. Это также объясняется изменением структуры молекулярных ассоциаций.
Среди существующих в природе жидкостей вода обладает наибольшей теплоемкостью. Это предопределяет большое ее влияние на климат. Основным терморегулятором климата являются воды океанов и морей: накапливая тепло летом, они отдают его зимой. Отсутствие водоемов на местности обычно приводит к образованию резко континентального климата. Благодаря влиянию океанов на значительной части земного шара обеспечивается перевес осадков на суше над испарением, и организмы растений и животных получают нужное им для жизни количество воды. Водная и воздушная оболочки земного шара постоянно обмениваются углекислотой с горными породами, растительным и животным миром, что также способствует стабилизации климата.
Известно, что молекулы, находящиеся на поверхности жидкости, имеют избыток потенциальной энергии и поэтому стремятся втянуться внутрь так, что при этом на поверхности остается минимальное количество молекул. За счет этого вдоль поверхности жидкости всегда действует сила, стремящаяся сократить поверхность. Это явление в физике получило название поверхностного натяжения жидкости.
Среди существующих в природе жидкостей поверхностное натяжение воды уступает только ртути. С поверхностным натяжением воды связано ее сильное смачивающее действие (способность «прилипать» к поверхности многих твердых тел). Кроме того, вода является универсальным растворителем. Теплота ее испарения выше теплоты испарения любых других жидкостей, а теплота кристаллизации уступает лишь аммиаку.
Как известно, молекула воды состоит из двух атомов водорода и одного атома кислорода. В составе обычной воды H2O имеется небольшое количество тяжелой воды D2O и совсем незначительное количество сверхтяжелой воды T2O. В молекулу тяжелой воды вместо обыкновенного водорода H – протия входит его тяжелый изотоп D – дейтерий, в состав молекулы сверхтяжелой воды входит еще более тяжелый изотоп водорода Т – тритий. В природной воде на 1 000 молекул H2O приходится две молекулы D2O и на одну молекулу T2O – 10 19 молекул H2O.
Тяжелая вода D2O бесцветна, не имеет ни запаха, ни вкуса и живыми организмами не усваивается. Температура ее замерзания 3,8°C, температура кипения 101,42°C и температура наибольшей плотности 11,6°C. По гигроскопичности тяжелая вода близка к серной кислоте. Ее плотность на 10% больше плотности природной воды, а вязкость превышает вязкость природной воды на 20%. Растворимость солей в тяжелой воде примерно на 10% меньше, чем в обычной воде. Поскольку D2O испаряется медленнее легкой воды, в тропических морях и озерах ее больше, чем в водоемах полярных широт.
Рассмотрим некоторые наиболее важные оптические свойства воды и льда. Не все знают, что вода прозрачна только для видимых лучей и сильно поглощает инфракрасную радиацию. Поэтому на инфракрасных фотографиях водная поверхность всегда получается черной. При прохождении света через слой морской воды толщиной в 0,5 м поглощаются только инфракрасные лучи, ниже поглощаются последовательно красные, желтые, а затем и сине-зеленые тона. По наблюдениям из батискафа человеческий глаз может обнаружить присутствие солнечного света на глубине до 600. 700 м. Эталоном прозрачности воды является Саргассово море. Белый диск в этом море виден на глубине до 66,5 м. Дальность видимости снизу вверх в приповерхностном слое моря составляет около 100 м.
Не весь солнечный свет поглощается водой. Вода отражает 5% солнечных лучей, в то время как снег – около 85%. Под лед океана проникает только 2% солнечного света.
Синий цвет чистой океанской воды объясняется избирательным поглощением и рассеянием света в воде. В условиях диффузного освещения морской поверхности вследствие преобладания при этом отраженного света море выглядит более серым. При наличии ряби и волнения насыщенность цвета увеличивается (с подветренной стороны более, чем с наветренной).
Существенную роль в жизни растений играют оптические свойства водяного пара. Дело в том, что водяной пар сильно поглощает инфракрасные лучи с длиной волны от 5,5 до 7 микрон, что важно для предохранения почвы от заморозков. Еще более действенным средством от заморозков является выпадение росы и образование тумана: конденсация влаги сопровождается выделением большого количества тепла, задерживающего дальнейшее охлаждение почвы.
Существенную характеристику электрических свойств вещества дает относительная диэлектрическая проницаемость. У воды она имеет величину в пределах 79. 81, у льда 3,26, у водяного пара 1,00705.
Без воды не было бы на Земле ни жизни, ни производства.
Арабаджи Всеволод Исидорович. Загадки простой воды. М.: «Знание», 1973
Вода вокруг нас
Громадна водная поверхность Земли. Свое название — океан — она получила по имени одного из титанов древнегреческой мифологии.
«Вода — краса всей природы», — говорил писатель С. Т. Аксаков. Вода окружает нас везде и всюду, и без воды жизнь невозможна. В жидком виде, газообразном (пар) и твердом (лед) она присутствует в воздухе, на поверхности Земли, в почве, в твердых породах, лежащих глубоко в земле, и в теле любого живого организма. Мельчайшие невидимые пары воды распространены в атмосфере на 10–15 километров от поверхности Земли. Скапливаясь, они образуют облака, а из облаков, в виде дождя или снега, снова падают на землю.
В океанах и морях находится более 1370 миллионов кубических километров воды. Хотя на суше воды в 350 раз меньше, чем в морях и океанах, но и здесь она распространена повсеместно в виде рек, озер, болот, подземных вод, снега, ледников, ископаемых льдов и замерзшей воды в области вечной мерзлоты.
Ежегодно реки несут в море 37 тысяч кубических километров воды. Много пресной воды заключено в ледниках. Если бы ледники растаяли, то уровень в океанах повысился бы на 50 метров! Многие места на карте СССР закрашены синими пятнами. Это — озера. В Советском Союзе их более 150 тысяч. Со всех сторон к морям бегут синие «змейки» рек.
В почве вода обычно составляет 15–20 процентов, но нередко ее содержание доходит и до 70 процентов.
В твердой породе, где, казалось бы, ни на глаз, ни на ощупь, ни на вкус нельзя обнаружить и капли воды, она всегда присутствует.
В живом организме вода составляет более половины веса тела, у медуз — до 98–99 процентов.
Вода — вечный странник. Течения разносят массы воды на громадные пространства. Все время происходит перемешивание многокилометровой толщи океана. В вечном движении находятся и воды суши. Они стекают в моря и океаны. Спускающиеся в моря ледники дают начало плавающим айсбергам. В дальнее странствование отправляет ветер испарившуюся воду.
Вода в организме находится в беспрерывном превращении. Она поглощается, участвует в различных процессах внутри организма и выделяется. За сотни миллионов лет существования живых существ воды океанов и морей находились неизменно под воздействием живых организмов. Они влияют на химический и газовый состав воды.
Академик В. И. Вернадский называет почву и воду биокостными телами, то-есть такими телами, которые образовались под воздействием живых существ.
Посмотрите на карту. Вы увидите, что поверхность океанов и морей занимает больше двух третей земного шара. В самом деле: из 510 миллионов квадратных километров всей поверхности 361 миллион квадратных километров приходится на океаны и моря. Объем вод океанов и морей превышает объем суши в 11 раз. Если воду океанов налить на землю ровным слоем, то получится слой толщиной в 2700 метров. Средняя глубина океанов более 4 километров, а 70 процентов всей поверхности океанов имеют глубины свыше тысячи метров.
Замечательной особенностью морей и океанов является их сообщаемость. Выйдя из одного порта моря, можно прийти в порт любой страны. Плывя по морям и океанам, можно совершить кругосветное путешествие.
Все моря и океаны, сообщаясь, представляют собой единый Мировой океан. Благодаря этому уровень водной поверхности везде почти один и тот же. Это дало основание все высоты на земле считать от уровня моря.
Несмотря на то, что все океаны и моря сообщаются, принято выделять четыре океана: Тихий (или Великий), Атлантический, Индийский и Северный Ледовитый. Самый большой — это Тихий океан, его водная поверхность равна 46 процентам поверхности Мирового океана. Он имеет (включая и относящиеся к нему моря) площадь около 180 миллионов квадратных километров и объем 724 миллиона кубических километров. Атлантический океан занимает площадь более 92 миллионов квадратных километров и объем 338 миллионов кубических километров. Индийский океан — площадь около 75 миллионов квадратных километров и объем 292 миллиона кубических километров. Северный Ледовитый океан — площадь более 14 миллионов квадратных километров и объем 17 миллионов кубических километров. Все моря, сообщаясь с каким-либо океаном, являются его составной частью, — как говорят, относятся к его бассейну. Из числа советских морей к бассейну Атлантического океана относятся Балтийское, Черное и Азовское моря; к Северному Ледовитому океану — Баренцово, Белое, Карское, Лаптевых, Восточно-Сибирское и Чукотское моря; к Тихому океану — Берингово, Охотское и Японское моря. Каспийское и Аральское моря являются внутренними водоемами — морями-озерами.
Величина организмов, обитающих в море, находится в некоторой зависимости от размеров бассейна. Так, гигантские киты-полосатики и крупнейшие растения — водоросль макроцистис — живут только в океане. При сравнении размера одних и тех же животных, обитающих в океане и море, обнаружено, что океанические крупнее морских. Так, дельфины-белобочки, живущие в Атлантическом и Тихом океанах, крупнее черноморских. Размер первых более двух метров, черноморские белобочки не превышают 170 сантиметров.
Посмотрим ли мы на иглу-рыбу, похожую на стебель морской травы, среди которой она живет, или на плоскую камбалу, по цвету и рисунку тела не отличающуюся от окружающего грунта, поразимся ли мы изменениям, которые претерпевает личинка угря во время путешествия от мест икрометания в центре Атлантического океана до рек Европы, — везде и всюду мы видим замечательные примеры приспособления формы тела и образа жизни к условиям обитания. Но сама среда все время изменяется, изменяются и организмы. Процесс эволюции идет непрерывно, и выживают те организмы, которые хорошо приспособились к условиям существования.
Знание среды позволяет понять пути образования различных видов животных и растений, особенности их распределения и промыслового использования.
Вот почему советская биология придает такое значение изучению внешней среды.
Знакомство с морем начинается на берегу. От берега отправляются в дальнее плавание корабли. На берег привозят свой богатый улов рыбаки. В теплое время на пляже проводят свой досуг тысячи людей. А в бурную погоду гуляющие по берегу любуются мощной стихией разыгравшегося моря. Видя их громады, хочется пожелать «тем, кто в море», скорее укрыться в надежной бухте. Как приятно чувствовать в такую погоду твердую почву под ногами! Но незыблемость этой твердыни весьма призрачна. Чтобы убедиться в этом, достаточно нашему взору остановиться на отдельных скалах, торчащих из воды в нескольких метрах от берега. Ведь недавно они были частью берега. Берег не устоял под напором яростных ударов волн. Пройдет еще немного времени, и эти скалы рассыплются на отдельные камни. Морская волна, перекатывая и обтирая камни друг о друга, превратит их в округлую гальку. Пройдет еще время, и галька перетрется в песок.
Более двухсот лет назад великий Ломоносов правильно определил происхождение гальки и песка. В книге «О слоях земных» он писал: «…к тому ж, кто может о сем сомневаться, посмотрев на морские и речные берега, и как выше упомянуто, видя округленные, то-есть острых углов лишенные камни, и зная, что они от волнения вод и от течения почти завсегда шатаются, переворачиваются и друг о друга трутся, не можно ли сказать, что отъедают от себя взаимно множество мелких частей, то-есть зерен песчаных». По нахождению окатанных камней — гальки — Ломоносов предлагал определять морское происхождение многих террас, находящихся ныне высоко или даже далеко от моря. «Остается еще упомянуть о многих местах земной наружности, содержащих множество тел, природное свое место на дне или берегу имеющих… Сюда принадлежат великие ряды круглых и кругловатых камней, кои простираются по высоким каменным горам длиною иногда на несколько верст, шириною на несколько сажен; фигурою и положением со всем подобным тем валунам, кои на берегу морском беспрестанно от зыбей обращаются».
Море образует террасы на берегу и откладывает гряды гальки. Рассматривая положение и число террас, расположенных над уровнем моря или лежащих под водой, можно определить число и характер опусканий и поднятий берега.
Волны разрушают берег. Течения подхватывают продукты разрушения и уносят их. Но крупную тяжелую гальку далеко унести вода не может. Галька остается у берега. Песок отлагается на большой глубине, а мельчайшие частицы ила еще глубже.
Прибойная волна подходит к берегу обычно под углом. В силу этого галька перемещается вдоль берега. Она движется иногда со скоростью более 20 метров в час, а при сильном шторме даже вдвое быстрее.
Во время движения за год перетирается пятая часть гальки. Если не будет поступления нового материала, то через пять лет обнажится коренной берег и волны, обрушившись на него, разломают кажущиеся неприступными каменные громады.
Часто гальку разносят на большие расстояния льды. В береговой припай вмерзает много различных камней. Весною, когда льды взламываются, они выносятся в открытое море. После таяния льдов вмерзшие предметы падают на дно. Проследив распределение гальки на дне, можно определить путь дрейфа льдов в море.
Интересным распространителем гальки являются многие ластоногие. Морские львы, а также моржи, сивучи, котики и некоторые тюлени заглатывают гальку, чтобы она помогла перетиранию пищи в желудке. Отплыв на далекое расстояние, морские львы вылезают на берег и здесь после переваривания пищи отрыгивают камни. Часто, не зная этого пути распространения гальки, ученый становится в тупик, обнаружив на берегу обломки необычных для здешних мест пород.
Прибой разрушает берег.
Процесс размывания берегов может итти очень быстро. Так, на Черном море, у станицы Приморско-Ахтырской, берег размывается вглубь суши до 12 метров в год.
В 1933 году в результате извержения подводного вулкана в районе Курильской гряды образовался остров Такетоми. Он лежал менее чем в километре от острова Алаид. Вулканический туф и лава — материалы весьма нестойкие. Волны Охотского моря быстро разрушили берега нового острова. Они укладывали обломки в направлении к острову Алаид. Через два года от острова Такетоми протянулась надводная коса к острову Алаид, и Такетоми стал полуостровом.
В образовании песчаных кос часто имеют большое значение незначительные препятствия. Достаточно затонуть вблизи берега какому-либо кораблю, как сейчас же вокруг него вырастает песчаный холм. Он начинает расти в сторону берега, как говорят, в сторону волновой тени, как в примере с островом Такетоми. Эта тень, то-есть защищенная от волн «задняя» часть холма, вытягивается в длинный хвост, достигающий берега. Образуется своеобразная песчаная бухта.
Берег дает приют многочисленным морским обитателям: на береговых скалах поселяются моллюски, балянусы и другие организмы. Среди моллюсков имеются многочисленные камнеточцы. Благодаря их работе рушатся скалы. По песку бегают крабики и прыгают рачки-гаммариды. В лужицах, образовавшихся из заплесков волн, кишит разнообразная жизнь.
Если мы разрежем толщу земной коры, то увидим, что сверху лежит «тонкий» слой осадочных пород. Они образовались на дне океана и имеют толщину в несколько километров. На суше осадочные породы — живые свидетели того, что земля, по которой мы ходим, — бывшее дно моря. Далее в глубину лежит слой относительно легких, богатых кварцем и бедных железом гранитных пород, толщиной примерно в 10 километров. Глубже лежит слой земной коры, состоящий из тяжелых базальтовых пород. Они в полтора раза богаче железом, чем гранитная оболочка Земли. Базальтовая оболочка в толщину имеет около 60 километров. Далее в глубину идут слои еще более тяжелые, еще более богатые железом. Проникнуть в них мы не можем. О них мы судим по извержениям вулканов, приносящих нам богатые металлами расплавленные глубинные породы. Приборы своими показаниями открыли нам глаза на то, чего мы не можем увидеть или взять в руки.
Кажется, во всем, о чем мы сейчас рассказывали, нет ничего особенного. Ведь естественно, что легкие породы должны лежать над тяжелыми!
Замечательно то, что базальтовая оболочка в виде единого слоя покрывает глубже лежащие слои земли, а вот гранитная распространена не повсеместно. Гранитные породы слагают все материки, а также дно Атлантического, Индийского и Ледовитого океанов, но их нет на пространстве Тихого океана.
Бесчисленные тихоокеанские острова и островки, удаленные от берегов, произошли в результате вулканической деятельности или образованы коралловыми полипами. У некоторых ученых сложилось даже впечатление, что какая-то гигантская (как говорят, космическая) сила оторвала слой гранитной оболочки с площади Тихого океана и унесла его в пространство. На месте возникшей гигантской впадины скопились воды, создавшие древнейший из всех океанов — Тихий океан.
В процессе развития земной коры на дне океанов и морей отлагаются различные осадки.
Эти осадки в результате химических процессов превращались в осадочные породы. В благоприятных условиях осадочные породы образовали многокилометровые толщи. Районы дна древних морей и океанов, поднятые на поверхность и ставшие сушей, почти повсеместно покрыты толстым слоем осадочных пород. Мы находим их на горах, даже таких высоких вершинах, как Эверест. Следовательно, эти горы были когда-то дном океана, на котором беспрерывно осаждались различные обломки и скелеты живых существ.
Тихий океан не только самый большой, но и самый глубокий. Неверно думать, что наибольшие глубины лежат где-то в центре океана. Наоборот, максимальные глубоководные впадины лежат по его краям, вдоль цепочек островов: Курильских, Японских, Филиппинских и Марианских. Глубины в этих местах превышают 10 километров. Наибольшая известная глубина Тихого океана — 10 863 метра. Если бы здесь образовалась возвышенность, равная самой высокой горе на Земле, — Эвересту, то над ее вершиной находился бы слой воды толщиной почти в два километра.
Самая большая глубина в Атлантическом океане — 8525 метров, в Индийском — 7450, а в Северном Ледовитом океане — 5180 метров. Дно океана не лежит ровным «полем». На дне широко распространен холмистый рельеф. Там имеются и большие горы и глубокие впадины. Часто подводная гора подымается с громадных глубин до поверхности океана, и ее вершина образует остров. Но многие цепи гор не подымаются на поверхность. Посредине Атлантического океана находится громадный хребет высотой до 1830 метров над дном. Он тянется от Исландии до Антарктики. Только отдельные пики этого гигантского хребта в виде островов — Азорских, св. Павла и Тристан-да-Кунья — возвышаются над поверхностью моря.
Обычно вдоль берегов располагается широкая отмель, которая, постепенно углубляясь, создает вокруг материков своеобразную платформу. Эту мелководную зону, глубиною в среднем до 200 метров, называют материковой отмелью. Материковая отмель — продолжение континента. Некоторые неглубокие моря (например, Балтийское) целиком или большею частью лежат на материковой отмели. За материковой отмелью наблюдается резкое увеличение глубины. Эта часть дна, до глубины несколько тысяч метров, называется материковым склоном. Глубже он переходит в обширнейшее ложе океана.
Материковая отмель занимает только 3 процента площади дна океана, материковый склон — 12 процентов, остальная площадь дна — ложе океана.
Наземный рельеф часто находит свое продолжение и на дне. Многочисленные ущелья продолжаются и под водой. Долину реки можно обнаружить в рельефе дна на расстоянии сотен километров от устья.
Все дно океанов и морей покрыто отложениями частиц твердых веществ, опустившихся на дно и образующих на нем мощные слои. Это морской грунт. По своему происхождению все грунты делятся на две группы. Одна группа грунтов — это различные материалы, принесенные с суши, их называют материковыми. Сюда входят обломки береговых скал, разрушаемых ударами волн, ил и песок, вынесенный реками, тучи пыли и песка, занесенные ветрами далеко в море, продукты вулканических извержений, а также куски земли и камни, вмерзшие в лед и вынесенные льдами далеко в море. Часто камни выносятся далеко в море всплывшими крупными водорослями, живущими на дне.
Другой группой грунтов являются отложения океанические. В этих отложениях большую роль играют мелкие скелетики одноклеточных животных — глобигерин и радиолярий, или одноклеточных растений — диатомей, обитающих в обширных просторах открытого океана. При громадной глубине океанов трупы мелких организмов, медленно падающие на дно, по пути большей частью растворяются или съедаются глубоководными обитателями. Лишь немногие войдут в состав донных отложений. Несмотря на это, в некоторых районах количество микроскопических организмов так велико, что илы на дне моря с полным основанием называют «глобигериновыми», «радиоляревыми» или «диатомовыми», в зависимости от организмов, скелеты которых преобладают в иле. Если мы рассмотрим под микроскопом несколько маленьких комочков глобигеринового ила, взятого со дна океана, то увидим, что в одном кубическом сантиметре этого ила окажется около 500 тысяч раковин и обломков глобигерин, 150 тысяч иголочек губок, 100 тысяч скелетиков радиолярий и створок диатомей и около 12 миллионов иголочек и пылинок! Кроме того, среди океанических отложений находят пыль, принесенную с суши, и продукты вулканического происхождения.
Мел под микроскопом.
Диатомовый ил под микроскопом.
Как правило, самые мелкие отложения — илы — присутствуют там, где нет сильных подводных течений.
Вдали от берегов влияние материковых осадков на образование донных отложений невелико. Там мы встречаем главным образом грунты океанического типа и заносимые сюда мельчайшие частицы с суши. Эти частицы, размером около одного микрона, носятся много лет в океане, пока не опустятся на дно в удаленных от берега районах.
Ложе океана за тысячи километров от берега покрыто так называемой красной глиной. Особенно большую площадь этот грунт занимает в Тихом океане. Он состоит из мельчайших частиц размером менее 0,05 миллиметра. Обычно это частицы вулканического и космического происхождения, а также остатки микроскопических организмов. Красная глина содержит много окислов железа и марганца, окрашивающих ее в красноватый цвет. В зависимости от преобладания различных соединений металлов илы бывают голубые, зеленые, коричневые, красные и других цветов.
Большую роль в образовании отложений на дне моря играют бактерии. Некоторые бактерии способствуют осаждению из воды в грунт различных веществ. Другие образуют так называемые конкреции, когда на камешке или раковине оседает минеральное вещество из водного раствора. Так, например, железобактерии создают на обширных пространствах залежи железо-марганцевых конкреций. Вначале колония бактерий обрастает поверхность камешка. Затем рост идет вверх, преимущественно по краям колонии, чтобы вся колония бактерий омывалась свежей водой. Образуется как бы блюдечко из привлеченных бактериями железо-марганцевых соединений. Встречаются большие конкреции величиной с чайное блюдце, но обычно они меньшего размера. Особенно много конкреций на дне Карского и Белого морей.
Скорость отложения материковых осадков б?льшая, чем у океанических; особенно она велика вблизи устьев рек. В предустьевых пространствах часто за несколько лет образуются такие большие мели, что они препятствуют судоходству. В дельте Волги отложения достигают 7 сантиметров в год. В прибрежных районах моря 1 сантиметр грунта отлагается в 5–6 лет, в глубинной части Черного моря — в 25 лет, в удаленных от материков областях осаждение идет так медленно, что 1 сантиметр отлагается тысячу лет.
Определить скорость отложений в прибрежной зоне, очевидно, дело не очень трудное. Зато в просторах океанов это сделать весьма сложно. На помощь часто приходит сама природа. Так, в северной части Атлантики был обнаружен на отложениях ледникового времени современный глобигериновый ил. Исторически это могло произойти только в послеледниковое время, то-есть около 9 тысяч лет назад. Отсюда уже нетрудно было вычислить скорость отложений глобигеринового ила, так как его толщина была известна. Получилось, что 1 сантиметр осадка отложился в 265 лет.
Затем провели исследования в экваториальной части Атлантики, то-есть в районах, не подвергавшихся оледенению. В глобигериновом иле обнаружилась смена теплолюбивых форм на холоднолюбивые. Эта смена произошла более 20 тысяч лет назад. Скорость осаждения в этом районе равнялась одному сантиметру в 415 лет. В южной части Атлантического и Индийского океанов 1 сантиметр глобигеринового ила отлагается за 1600–1700 лет. Отложение 1 сантиметра красной глины в некоторых районах продолжалось около 2 тысяч лет.
Изучение скорости образования осадка и его мощности позволяет иногда определить возраст моря. Например, в Тирренском море мощность осадков 276 метров. Для накопления таких осадков нужно около 3 миллионов лет. Очевидно, Тирренское море и образовалось около 3 миллионов лет назад.
За долгую геологическую историю океанов на их дне отложился многокилометровый слой. Ученые подсчитали, что толщина осадков в океане достигает 2 километров.
Мощные геологические процессы иногда поднимают морские отложения на поверхность Земли, и в виде осадочных пород они покрывают громадные пространства суши. Сами осадочные породы дают ценные строительные материалы: известь, мел, песчаник и другие. В осадочных породах находят богатейшие залежи различных полезных ископаемых. Среди них большое значение имеет нефть. Она образуется из отмерших остатков водных растений и животных.
Недавно в толще кораллового известняка нашли капельки нефти. Они расположились в ячейках, которые служили местообитанием полипов. Сама природа пришла на помощь ученым, представив вещественное доказательство происхождения нефти. В образовании нефти главнейшее значение имеет не клетчатка растительной ткани (как для каменного угля), а жидкое вещество, наполняющее клетку, — протоплазма.
Обильно развивающиеся в богатой органическим веществом среде бактерии также участвуют в создании нефти. Но само по себе обилие органических остатков не дает еще нефти. Для этого нужен ряд условий, который обычно встречается в прибрежных районах и заливах. Важно, чтобы все эти органические остатки были бы захоронены таким образом, чтобы кислород не имел к ним доступа.
В прибрежной области массы живых существ, отмирая, опускаются на дно. Сверху на них ложатся песок и глинистый ил, приносимые реками. Так «живые» отложения, заключающие большие массы органического вещества, оказываются погребенными в осадочных песчано-глинистых слоях. Особенно благоприятно идет образование нефти, если этот участок берега или залив начинает погружаться. Тогда процесс накопления осадков ускоряется.
При всех этих условиях разложение органических веществ происходит без доступа кислорода, под огромным давлением и при высокой температуре.
Проходило много лет, и органические вещества превращались в нефть. Вот почему поиски нефти так успешны в районах, некогда бывших заливами исчезнувших морей. Таково происхождение нефти, открытой советскими геологами на западных склонах Уральских гор.
В Молотовской, Куйбышевской и Саратовской областях разрабатывают очень древнюю нефть. Она образовалась более 300 миллионов лет тому назад. Тогда всю обширную территорию Европейской части СССР занимало море. Предгорье западного Урала было берегом этого моря.
Такого же происхождения нефть и на берегах Каспийского моря, но только она более молодого возраста.
В районе Никопольских марганцевых разработок в породе находят много зубов древних акул, позвонков вымерших китов и обломков раковин моллюсков. Они — «живые» свидетели морского происхождения марганцевых залежей этого района.
Действительно, ручьи и реки, протекая по равнине, вносили в древнее море много растворенных марганцевых соединений. В результате различных процессов эти соединения отлагались на дне моря. Вместе с окаменевшими частями погибших животных их заносило на дне моря песком и илом, и они оказались погребенными под пластом донных осадков.
Глубоко в недрах земли в центре Русской равнины советские ученые нашли двухсотметровые залежи железистых кварцитов. Образовались они в древнейшую геологическую эпоху, когда здесь катило свои волны огромное море. На дне этого моря отложились осадки бурого железняка, покрываемые толщами песка. В дальнейшем дно моря со всеми накопившимися осадками оказалось глубоко погребенным под налегшими сверху горными породами. Под воздействием большого давления и высокой температуры создались громадные залежи железной руды.
Более чем 100 тысяч гектаров занимают залежи керченской руды. В этот район реки несли свои воды, богатые железистыми соединениями. Там, где ведутся разработки, хорошо видно, как сверху руд лежит глинистый слой, который в отдаленные времена захоронил железистые соединения.
Добываемая в Донбассе каменная соль тоже морского происхождения. Она отложилась на дне мелких заливов древнего моря. В то время климат был жаркий и обильное испарение уносило массы воды, повышая тем самым концентрацию раствора солей. Соль начала выпадать. Залежи ее успешно разрабатываются многие годы.
На другом конце древнего Русского моря в районе Урала были найдены запасы калийных солей, превышающие все мировые запасы этого ценнейшего для удобрения полей вещества. Калийные соли лежат на огромной толще каменной соли, запасы которой разрабатывали издавна. Даже возникший здесь город получил название Соликамск. В этом образном названии хорошо отражена геологическая особенность северного района реки Камы.
Процесс образования нефти и других полезных ископаемых на дне моря происходит и в настоящее время.
Совершается он очень медленно. И для того, чтобы создались большие запасы, нужны миллионы лет.
Вода — прекрасный растворитель. В природе нет вод, которые не содержали бы некоторого количества растворенных веществ. Даже «кристально чистый» ручеек, текущий из высокогорного ледника, и тот содержит в растворе соли и газы.
Морская вода на вкус соленая, вернее, горьковато-соленая, непригодная для питья. Поэтому на корабле всегда имеется большой запас пресной воды. В былые времена питьевая вода на парусном судне в период безветрия распределялась строже, чем все другие продукты. Паровые котлы современных кораблей также требуют пресной воды, иначе накипь на них может вывести котел из строя. Теперь на многих судах появились опреснители, морскую воду выпаривают, получая из охлажденного пара искусственную воду без солей. В последнее время изобретены и химические опреснители, ими можно пользоваться даже индивидуально. Профильтрованная морская вода делается пригодной для питья.
Человек ощущает соленый вкус воды, если в килограмме воды содержится 0,5 грамма соли. Но в обычной морской воде соли в 70 раз больше — 35 граммов. Ученые условились обозначать соленость воды не в сотых, а в тысячных долях. Тысячная доля какого-либо числа — «промилле» — обозначается специальным знаком — ‰.
В морской воде преобладает хлористый натр — обычная поваренная соль, которую мы употребляем в пищу. Она составляет 78 процентов всех солей океанской воды. Горьковатый, неприятный вкус морской воде придают соли магния. Благодаря течениям воды океанов хорошо перемешиваются, и поэтому состав солей воды океанов одинаков. Очень мало меняется и общее содержание солей. От 33 до 37 ‰. В среднем можно считать соленость океанических вод равной 35 ‰.
Если бы мы могли выпарить все океаны, то огромная площадь их дна оказалась бы покрытой шестидесятиметровым слоем соли.
Вблизи устьев рек соленость падает. Естественно, что менее солены моря, в которые вливается много пресной воды с суши.
Океанская и пресная вода по составу растворенных веществ различна. В морской воде основную массу этих веществ образует хлористый натрий. В водах рек преобладают соли угольной кислоты, главным образом карбонат кальция (из него же состоит мел, известняк и др.). Сульфаты — соли серной кислоты — содержатся примерно в одинаковом процентном отношении к общему количеству солей как в морской, так и в пресной воде. Производные этих солей дают гипс, алебастр, глауберову соль и другие.
В океанах, несмотря на многолетние наблюдения, никакого изменения состава солей не наблюдается.
При образовании первичного океана в нем растворилось много солей, находившихся на поверхности Земли и в породах, разрушавшихся под действием вод.
Осолонению вод океана содействовали обильные выделения из недр Земли различных веществ, особенно во время извержения бесчисленных вулканов, действовавших повсеместно и на дне океанов. Извержения увеличивали содержание основного элемента океанической воды — поваренной соли. Текущие с образовавшихся материков реки вносили в океан множество веществ, обогащая состав морской воды. О том, что воды океана даже в древние времена были солеными, свидетельствует также и то, что животные, его населявшие, известные нам по ископаемым окаменелостям, были морскими существами. Сравнивая древнейших обитателей океана с современными морскими животными, мы можем считать, что соленость вод в те времена уже мало отличалась от нынешней.
Осолоняющая роль современных рек и других потоков, несущих свои воды с материка в океаны, ничтожно мала по сравнению с объемом океанов и тем количеством солей, которые там имеются. Реки вносят только 2 735 000 000 тонн соли в год. Количество же солей в Мировом океане равно 46 188 000 000 000 000 тонн. Таким образом, ежегодный принос солей реками почти в 17 миллионов раз меньше количества солей, находящихся в океане.
Как ни велики 17 миллионов лет, но для истории Земли это немного. В поддержании определенной солености вод океанов большое значение имеют химические процессы осаждения принесенных веществ и жизнедеятельность существ, обитающих в них. Часть принесенных солей сохраняется в растворе, но почти такое же количество солей разносится ветром с брызгами воды далеко вглубь континентов. В последующее время эти соли опять будут снесены в океан.
Влияние живых существ на солевой состав воды идет с самых отдаленных времен. Бесчисленные животные и растения потребляют для постройки своих раковин и скелетов большие количества веществ, приносимых реками. Особенно много извлекают они углекислого кальция, который так сильно отличает солевой состав морских вод от пресных вод, втекающих в океан с суши.
В раковине моллюсков и скелете кораллов отлагается по весу до 95–99 процентов углекислого кальция. До 60–80 процентов веса тела кремневых губок и радиолярий составляют кремнезем, диатомовые водоросли на 20 процентов по весу состоят из кремнезема. Много извлекается из морской воды различными организмами также и железа. Донные водоросли извлекают в большом количестве калий и иод.
Растения, питаясь, поглощают углекислый газ и выделяют кислород; при этом они создают в своем теле органические вещества. Все животные и растения дышат кислородом и выдыхают углекислый газ. Бактерии разлагают тела отмерших организмов с выделением углекислоты и неорганических веществ. Роль живых существ не ограничивается перемещением — миграцией — различных соединений. Они участвуют в образовании и горных пород. Существование мощных толщ известняков нельзя себе представить без участия многочисленных микроскопических корненожек, известковых водорослей, кораллов, моллюсков и других животных. Их раковины и скелеты часто обнаруживаются при раскалывании известковых глыб.
Примеры влияния бактерий, водорослей и животных на химический состав воды и процессы осаждения на дне моря можно значительно увеличить. Все они говорят о том, что химические процессы в океане проходят во взаимной связи с жизнью различных организмов, давая яркий пример диалектического развития природы.
Для развития и роста водных растений особенно важны так называемые биогенные вещества. Это в первую очередь соли фосфорной кислоты (фосфаты) и соли азотной кислоты (нитраты), которыми удобряют почву. Так же как и на суше, в море их очень немного. Эти вещества, необходимые для создания белков, очень быстро усваиваются водорослями. Вот почему так важно, чтобы поверхностный слой воды, где живут растения, имел бы постоянный источник пополнения биогенными веществами. Таких источников два.
Во-первых, это материковая вода, смывающая биогенные вещества с поверхности суши и удобряющая близлежащие пространства моря. Этим, кстати, объясняется, почему в районах моря, близко расположенных к устьям рек, количество животных и растений увеличивается.
Во-вторых, источником пополнения этими питательными веществами поверхностных слоев моря являются глубинные воды. Отмирающие организмы, опускаясь в глубину, постепенно разлагаются и пополняют запасы биогенных веществ в нижних слоях воды. При перемешивании вод моря они подымаются вверх и удобряют слои воды, где живут водоросли.
В зависимости от солености изменяется видовое разнообразие фауны и флоры. Как правило, в опресненных местах количество видов меньше по сравнению с настоящими морскими районами. Например, в Средиземном море имеется 524 вида рыб, соленость воды этого моря 35–38 ‰. В Черном море — 143 вида рыб, а соленость воды 18 ‰. В Азовском море всего 80 видов рыб, соленость — 12 ‰. Но при этом выступает новая закономерность. В сильно опресненных районах малое число видов сопровождается их массовым развитием. В мелководном Азовском море, снабжаемом реками большим количеством биогенных веществ, при хорошем перемешивании вод, «плотность» животного мира огромна. Нет другого моря в мире, в котором приходилось бы на один гектар столько рыбы.
Жизнь в воде зависит от распространения газов, особенно кислорода. Главный источник насыщения вод моря газами — атмосферный воздух. Он проникает в воду и растворяется в ней. В результате вертикального перемешивания вод газы разносятся на различные глубины. Вода лучше растворяет кислород и хуже азот. Поэтому в составе растворенных в морской воде газов кислорода будет в среднем 34 процента вместо 21 процента в составе атмосферного воздуха. Большое значение в обогащении кислородом воды играют водоросли.
Количество растворенных газов в воде зависит от многих причин, особенно большое значение имеет температура воды. Чем выше температура воды, тем меньше газов в ней растворится.
Кислород — важнейший газ для жизни всех живых существ. Морские организмы дышат кислородом, растворенным в воде. Обычно в поверхностных слоях моря кислорода больше, нежели в глубинных. Течения в большинстве морей хорошо перемешивают воду, поэтому кислород, хотя бы в малом количестве, всегда распространяется до дна. Временный недостаток кислорода в море может привести к гибели рыб и других животных. Изредка в застойных глубинах морей, как, например, в Черном море, кислорода нет. Там могут жить только бактерии, способные существовать без растворенного в воде кислорода.
Солнечные лучи не достигают больших глубин океана. Чем ниже стоит солнце над горизонтом, тем больше лучей отражается от поверхности моря. Поэтому в арктических морях, где солнце не подымается высоко, при прочих равных условиях свет распространяется на меньшую глубину, чем в средних широтах и особенно в Экваториальной области.
Судьба солнечного луча, проникшего в воду, не простая. Он распадается на составные части спектра, то-есть лучи разного цвета, которые доходят до различной глубины.
При этом почти все инфракрасные лучи и большая часть ультрафиолетовых, то-есть особо длинные и самые короткие лучи спектра, невидимые человеческим глазом, поглощаются в первых же метрах воды. Так как в инфракрасной части солнечного спектра содержится основное количество тепловой энергии, то легко понять, почему нагревается только самый поверхностный слой воды. Это тепло передается нижележащим слоям в результате перемешивания. Глубже проникают те части солнечного луча, которые несут световую и химическую энергию.
Различные мелкие организмы, во множестве населяющие поверхностные слои, рассеивают свет, проникший в воду. Рассеивание вызывается также молекулами воды, солями и ионами. Оно зависит и от величины частиц, на которые наталкиваются лучи света.
Всего сильнее рассеиваются синие и фиолетовые лучи спектра. Они отражаются и вверх, человек видит синий свет, исходящий из глубин моря. Поэтому цвет прозрачной морской воды вдали от берегов синий. Там, где в воде много взвешенных частиц (массы планктона, прибрежная муть), рассеиваются сильно зеленые лучи, цвет воды становится зеленым. Если вода очень засорена частицами грунта, то она приобретает желтую окраску. Особенно часто это бывает после шторма; тогда в прибрежной области вода может стать даже коричневой от поднятых со дна частиц грунта.
Смену цветов видит каждый моряк, когда он покидает прибрежные желтозеленые воды и переходит к синим водам открытого моря. Замечательный русский художник Айвазовский талантливо запечатлел на своих картинах эту игру красок.
Но вернемся к лучам света, проникшим в воду. Угасание света различных частей спектра идет так быстро, что можно говорить об «исчезновении» отдельных частей солнечного спектра. Длинные лучи теряют энергию начального светового потока скорее, чем короткие. Так, если принять проникшие в воду лучи за 1 тысячу единиц, то красные и оранжевые лучи на глубине в 10 метров составляют 2–3 единицы, зеленые и голубые — 166, синие — 437, а фиолетовые — 800 единиц. На глубине в 100 метров измерить энергию красных лучей уже затруднительно; оранжевый дает только следы (0,0001), зеленый и голубой — 0,03, синий — 5,5, а фиолетовый — 10 единиц. На глубине 200 метров наступают трудности в определении энергии оранжевых лучей, а на глубине 500 метров такая же судьба постигает зеленые лучи. На глубине в 1 тысячу метров «угасают» синие лучи, а на глубине 1500 метров — и лучи фиолетовой части спектра. Это подтверждается опытом. В Средиземном море на глубину в 1700 метров была опущена в особом приборе фотографическая пластинка. Несмотря на трехчасовую экспозицию, пластинка не потемнела.
Человеческий глаз обладает наилучшей восприимчивостью к желтой, зеленой, голубой частям солнечного спектра, то-есть к лучам, имеющим относительно хорошее проникновение в воду. При опускании в гидростате человек может различать предметы на глубине до 300 метров, последние следы света для него исчезают не глубже 580 метров.
На глубине в 17 метров красные животные кажутся человеку черными в связи с ничтожным количеством здесь красных лучей. На глубине 50 метров вода имеет зеленую окраску, переходящую на 60 метрах в зеленовато-синюю. На 180 метрах вода синего цвета, а на глубинах в 500 метров кажется человеку черно-голубой или темно-сероголубой.
Глаз рыб особенно восприимчив к синей и даже фиолетовой части спектра. Рыбы близоруки, зато вблизи они могут различать предметы при ничтожных следах света. Так, опыты с рыбой лепомис показали, что она видит при освещении, которое человеческий глаз уже не воспринимает. При таких ничтожных «крохах» света эти рыбки видят двухмиллиметровых рачков на расстоянии в сантиметр, а предметы диаметром в два сантиметра на расстоянии в 10 сантиметров. Можно предположить, что глубоководные рыбы с телескопическими глазами довольствуются еще меньшими проблесками света и видят на большем расстоянии.
С проникновением в воду лучей разного цвета связана и окраска многих морских животных. Известно, что окраска живых существ является в большинстве случаев маскировкой, помогающей организму скрываться от врага. Многие животные выработали замечательную способность быстро менять свою окраску в зависимости от того, на каком фоне они живут. Маленькая креветка (рачок), живя среди веточек зеленых растений, становится и сама зеленой; попав на красную водоросль, она скоро становится красной. Общеизвестна быстрая смена не только окраски, но и рисунка у камбал, в зависимости от цвета и структуры дна.
У большинства животных окраска постоянная, причем она является дополнительной по отношению к лучам света, проникающим на глубину их обитания. Животные выглядят при этом серыми. Окрашенные в зеленый цвет обитатели поверхностных вод при освещении большим количеством красных лучей становятся серыми. Жители более глубоких слоев окрашенные в красный цвет, становятся серыми при освещении зелеными лучами, господствующими на этой глубине.
С ничтожным количеством света на больших глубинах связаны синие, фиолетовые и черные тона глубоководных животных. У обитателей десятикилометровых глубин, где нет света, окраска почти отсутствует, и они выглядят белыми.
Свет играет особо существенную роль в жизни моря. Распространение растений в глубину зависит от проникновения света в воду. Водные растения нуждаются в солнечном свете, особенно от красной до зеленой части солнечного спектра, а эти лучи не доходят до значительной глубины. Вот почему так мало водорослей встречается на глубинах более 100 метров.
Прикрепленные ко дну водоросли имеют окраску от зеленой, у обитателей прибрежных вод, и до красной — на больших глубинах. В отличие от животных эта окраска хотя и является дополнительной, но играет не защитную роль, а способствует максимальному использованию энергии соответствующих лучей спектра.
У животных нет такой зависимости от света, как у растений. Поэтому они могут населять всю толщу вод океана.
Изменение света в течение суток вызывает суточные вертикальные перемещения живых существ. Миллиарды мелких рачков, червей, мелких рыб и других животных уходят днем от света в глубину моря, а вечером подымаются к поверхности. За ними, в поисках пищи, совершают вертикальные миграции сельди, сардины и другие рыбы.
Таким образом, с распределением света связаны важнейшие жизненные явления океана.
Большое значение для географического распределения живых существ имеет температура воды. Она очень сильно меняется в зависимости от географического положения и глубины.
В Тропической области температура поверхностных слоев воды обычно выше 20 градусов С, на глубине в 200 метров — менее 15 градусов, на глубине 1 тысячи метров — около 4–6 градусов, глубже — около 2–3 градусов. В Умеренной области температура океанических вод на поверхности — около 10 градусов, на глубине 1 тысячи метров — около 7 градусов. В полярных морях температура воды на различных глубинах часто бывает ниже нуля.
Обычно поверхностные воды — самые теплые, затем идет очень слабое понижение температуры до некоторой глубины, где наступает резкое изменение температуры воды. Здесь она становится значительно холоднее. Этот слой носит название «слой температурного скачка». Он обычно лежит на различных глубинах — от 15 до 100 метров. Замечательная особенность этого слоя-скачка заключается в том, что в связи с резким изменением температуры меняется и плотность воды. При одинаковой солености с понижением температуры увеличивается удельный вес воды, а следовательно, растет и плотность. Иногда возрастание плотности столь велико, что слой температурного скачка образует как бы «водяное дно», которое моряки-подводники называют «жидкий грунт».
Суточные изменения температуры воды очень малы, к тому же они наблюдаются преимущественно в прибрежных районах или в небольших заливах и бухтах.
Более значительны сезонные изменения в температуре воды. Особенно они сказываются в поверхностных слоях воды до 500 метров. Глубже температура воды почти не меняется. В зависимости от места сезонные изменения весьма различны; всего больше они в Умеренной области. Например, у берегов Англии сезонные изменения в температуре верхних слоев воды выражаются почти в 10 градусов, а в Черном море — до 15 градусов. В Экваториальной области сезонные отличия температуры не превышают 2 градуса, а в полярных морях они еще меньше.
Как ни сильно греет солнце в тропиках, но температура воды в океане не бывает выше 30 градусов. Объясняется это большой теплоемкостью воды, охлаждением воды при испарении за счет скрытой теплоты испарения и непрерывным перемешиванием вод океана.
Благодаря сильному испарению с поверхности океана в Тропической области воды становятся более солеными, а следовательно, и более плотными. Более тяжелые воды опускаются вниз, вытесняя из глубоких слоев кверху более легкие, при этом воды перемешиваются. К северу и к югу от тропиков увеличение плотности воды происходит при охлаждении. Благодаря этому зимняя холодная вода начинает опускаться вниз, вызывая тем самым глубокое перемешивание вод. Летом поверхностные воды прогреваются, но еще до осени в глубинных слоях некоторых морей сохраняется зимняя охлажденная вода. Только осенью и зимой произойдет выравнивание температуры воды различных слоев.
Вертикальное перемешивание снабжает глубинные слои кислородом и теплом, а поверхностные слои питательными веществами, столь необходимыми для развития водорослей.
Воды океана находятся всегда в движении. Взамен идущим по поверхности от экватора к полюсам теплым водам в глубине от полюсов к экватору движутся холодные воды с температурой около 2 градусов. В Экваториальной области они поднимаются кверху. Здесь только поверхностные воды — до 50–100 метров толщиною — самые теплые по сравнению с водами в других районах. Глубже 200 метров вода на экваторе холоднее, чем на соответствующей глубине в Умеренной области. Только на глубинах в 2–4 километра и ниже температура везде почти одинакова — около 2 градусов. Это воды, пришедшие из полярных районов, особенно из Антарктики.
Естественно, самые холодные воды — воды Северного Ледовитого океана и воды, омывающие Антарктиду. Соленая морская вода замерзает не при 0 градусов, а при более низких температурах. Чем выше соленость воды, тем более низкая температура необходима для превращения ее в лед.
Читайте также
Вода — распространитель заразы
Вода — распространитель заразы Болезнетворные микробы сохраняют жизнеспособность в воде довольно долго. Но ведь человек не может обходиться без воды. Отсюда постоянная угроза инфекции. Конечно, опасность представляет лишь та вода, которая загрязнена патогенными
Вода в почве
Вода, вода везде…
Видообразование вокруг нас
Видообразование вокруг нас В современной биосфере полным-полно примеров видообразования, происходящего «здесь и сейчас». Все эти бесчисленные спорные виды, полувиды, супервиды, кольцевые виды, видовые комплексы и «букеты видов» (species flocks) — не что иное, как примеры
Глава 2 Вода — основа жизни
Глава 2 Вода — основа жизни Жизнь возникла благодаря воде. Химические реакции, происходящие в живых тканях, требуют участия молекул, плавающих в воде или находящихся на поверхности мембран, которые омываются водой. Эти реакции часто и происходят с участием самих молекул
Их хлеб да вода
Инородные предметы и вода в ухе
Инородные предметы и вода в ухе Дети, играя с собакой, часто засовывают ей в уши различные предметы, например шарики, бусинки, горошины.При мытье и купании щенят, да и взрослых собак им в уши часто попадает вода. Если это произошло в холодное время года или собака долгое
Кровь — морская вода!
Кровь — морская вода! Итак, мы вкратце проследили путь, по которому ионы натрия и калия попадают в организм. А что же дальше? Давайте посмотрим, каково здесь содержание металлов-братьев? В теле Гомо Кондитионалиса содержится 140 г калия и 100 г натрия. Соответственно их
Вода для мате
Вода для мате Говоря о воде, которая предназначалась для приготовления мате, гуарани, повстречайте вы их, в первую очередь будут иметь ввиду чистейшие струи водопадов Игуасу. Именно эта вода считается наиболее «божественной». Гуарани были первыми людьми, которые
Вода и биосфера
Вода и биосфера Внешняя оболочка Земли занята биосферой. И вполне правильно, когда биосферу называют еще «областью жизни» или «живым покровом» Земли. Это огромное пространство, включающее атмосферу, гидросферу и литосферу, населяют различные виды живых организмов.
Вода и жизнь
Вода и жизнь Жизнь — биологическая форма движения материи. Жизненному процессу в отличие от неживой природы присущ обмен веществ, в основе которого лежат биохимические процессы. Изучение живых организмов, в том числе человеческого тела, показывает, что в их составе не
Вода в живом организме
Вода в живом организме На долю воды приходится основная часть массы любого живого существа на Земле. У взрослого человека вода составляет больше половины массы тела. Именно у взрослого человека, потому что в разные периоды жизни содержание воды в организме изменяется. У
Вода и растения
Вода и растения Вода находится в вечном круговороте. Растения — самые активные участники этого великого природного процесса, благодаря которому ежегодно в движение приводится более 475 млрд. т воды.Как известно, сухое созревшее семя при правильном хранении может годами
Вода, которую мы пьем
Вода, которую мы пьем Чтобы жить, человеку требуется в сутки, как уже говорилось, 2–3 л воды. В климатических условиях средней полосы нашей страны суточная потребность в воде составляет примерно 2,3–2,7 л.В районах с жарким климатом потребность в воде увеличивается до 3,5–5 л