в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах

Типы мышечных волокон I Как их тренировать?

в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть картинку в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Картинка про в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах

в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть картинку в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Картинка про в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах

Zheleznyakova Alyona

Писатель и эксперт / Опубликовано

Поделиться этой страницей

Быстрые и медленные мышечные волокна

Быстрые мышечные волокна (гликолитические) – это быстро сокращающиеся волокна, которые отличаются большой силой, но высокой утомляемостью. Для удобства восприятия сократим их название до официально принятой аббревиатуры — ГМВ.

Медленные мышечные волокна (окислительные) – это волокна медленно сокращающиеся, они, наоборот, отличаются небольшой силой и низкой утомляемостью. Для удобства восприятия сократим их название до официально принятой аббревиатуры — ОМВ.

В нашем организме всё продумано до мелочей, и мышцы здесь не являются исключением. В зависимости от длительности и интенсивности нагрузок задействуются те или иные мышечные волокна, а их соотношение напрямую влияет на наши спортивные достижения. Вот почему приведенная ниже информация необходима для построения программы тренировок каждого спортсмена!

в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть картинку в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Картинка про в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах

ГМВ vs ОМВ

Скорее всего, вы уже слышали о том, что волокна, из которых состоят наши мышцы, бывают двух типов: быстрые (ГМВ) и медленные (ОМВ). Если говорить точнее, существует также третий, промежуточный тип – переходные волокна.

Тип волокна определяется количеством нервных импульсов, посылающихся к волокну. Чем импульсов больше – тем, соответственно, выше активность адезинтрифосфатазы, а также выше скорость сокращения волокна.

Адезинтрифосфатаза – это особые ферменты класса гидролаз, ускоряющие процесс отщепления H3PO4 от молекул аденозинтрифосфата, в результате которого происходит высвобождение энергии, используемой для сокращения мышц.

ГМВ (белые)

Итак, почему же они «белые»? Всё дело в содержащихся в них капиллярах, которых значительно меньше, чем в ОМВ, отсюда и различия в цвете. По своей структуре ГМВ, как правило, в несколько раз толще, чем ОМВ. Их реакция на поступающие из мозга сигналы мгновенна, а скорость сокращения как минимум в два раза выше, чем у окислительных. Энергию гликолитические волокна получают за счет быстроусвояемых АТФ, креатинфосфатов и гликогена. Необходимо понимать, что эти энергетические источники иссякают всего за 30-60 секунд. В процессе получения энергии быстрыми волокнами не участвует кислород, благодаря чему энергия высвобождается практически мгновенно, однако ее запасы сильно ограничены. Исходя из этого, можно сделать вывод, что белые мышечные волокна подходят для высокоинтенсивных, но непродолжительных нагрузок. Однако их энергии не достаточно для выполнения многочисленных повторов и долгих, монотонных движений.

ОМВ (красные)

Они являются полной противоположностью гликолитическим по своему строению и функциям, и буквально созданы для легких и продолжительных нагрузок. Они способны накапливать, запасать энергию, а затем постепенно ее расходовать, благодаря митохондриям и миоглобину. Так что, если в ваших мышцах преобладают ОМВ — из вас вполне может получиться бегун на длинные дистанции, вам также подойдет аэробный спорт.

К сожалению, ОМВ имеют гораздо меньший потенциал в росте своих объемов и количества, чем гликолитические. Так что увеличение нашей мышечной массы в основном происходит за счет ГМВ.

Соотношение ОМВ и ГМВ в нашем организме предопределено генетикой и изменить его мы не в силах. У абсолютного большинства из нас преобладают окислительные волокна; у каждого четвертого – наоборот, процентное соотношение гликолитических волокон немного выше, чем красных. И лишь у некоторых спортсменов преобладание одних мышечных волокон над другими доходит до 85% – именно они обладают самыми высокими шансами добиться наибольших результатов в спорте.

Тренировка мышечных волокон

Основной целью бодибилдеров является увеличение мышечной массы, которое, в основном, зависит от роста ГМВ.

в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть картинку в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Картинка про в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах

Гликолитические волокна

Для увеличения их объема используют интенсивные кратковременные нагрузки с применением больших весов (60-80% от повторного максимума) и при постоянном чередовании групп мышц. Увеличивается сечение волокон, а также энергетические запасы в мышцах, благодаря чему происходит гипертрофия мышц.

Длительность выполнения одного подхода – менее минуты. Время отдыха между подходами – 2-4 минуты. Средняя частота тренировок – вполне достаточно трех силовых тренировочных дней в неделю. Упражнения выполняются в среднем темпе, не быстром и не медленном, при полной амплитуде; отдельные фазы выполнения упражнений не выделяются.

Окислительные волокна

Упражнения выполняются с небольшим весом в 30-50% от того веса, с которым вы способны выполнить упражнение лишь с одним повторением. В подходе выполняется в среднем от 15 до 30 повторений. Подходов 5-8, можно больше. Необходимо выполнять упражнения в медленном или среднем темпе, без выделения определенных фаз движения. Амплитуда выполнения упражнений — полная.

Волокна на наглядном примере

в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть картинку в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Картинка про в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах

Для того, чтобы полностью разобраться с тем, что же такое ГМВ и ОМВ и как они выглядят — нет ничего лучше, чем увидеть их своими глазами. И сделать это очень просто. Вы едите курятину? Дело в том, что именно куриное мясо как нельзя лучше отображает расположение гликолитических и окислительных волокон в организме птицы. Наверняка многие из вас замечали, что мясо курицы в районе грудки и крыльев — белое, к тому же оно практически не содержит жира, тогда как мясо куриных окорочков и бедер имеет темно-красный окрас и более высокое содержание жира. Всё дело в том, что курица, как и большинство других домашних птиц, практически всё своё время проводит стоя, а значит, мышцы ее ног подвергаются постоянной статической нагрузке (т.е. задействуются окислительные волокна). В то же время крылья используются крайне редко и лишь для быстрых энергичных взмахов, что характеризует работу гликолитических волокон.

Источник

Ресинтез АТФ в мышечных волокнах

Дано определение ресинтеза АТФ. Описаны основные пути ресинтеза АТФ в мышечных волокнах: креатинфосфатный, гликолитический, миокиназный и тканевое дыхание. Описаны количественные критерии путей ресинтеза АТФ, соотношение между различными путями ресинтеза АТФ при мышечной работе, а также между путями ресинтеза АТФ и зонами относительной мощности.

Ресинтез АТФ в мышечных волокнах

Определение

Ресинтез АТФ – синтез АТФ из различных энергетических субстратов во время физической работы в мышечных волокнах.

Формула ресинтеза АТФ выглядит следующим образом:

Пути ресинтеза АТФ

Ресинтез АТФ может осуществляться двумя путями:

Аэробный путь (тканевое дыхание, аэробное или окислительное фосфорилирование) – основной способ образования АТФ в мышечных волокнах. Он протекает в митохондриях мышечных волокон. В результате тканевого дыхания выделяется 39 молекул АТФ. Окисляемое вещество распадается до углекислого газа и воды.

Анаэробный ресинтез АТФ

Анаэробные пути ресинтеза АТФ являются дополнительными способами образования АТФ в мышечных волокнах в тех случаях, когда основной путь получения АТФ – тканевое дыхание не может обеспечить мышечную деятельность необходимым количество кислорода. Эти механизмы ресинтеза АТФ активно функционируют в начале выполнения физических упражнений, когда тканевое дыхание не полностью «развернулось», а также при физических нагрузках высокой мощности.

Анаэробный ресинтез АТФ в мышечных волокнах возможен посредством нескольких механизмов:

Количественные критерии путей ресинтеза АТФ

Существуют количественные критерии путей ресинтеза АТФ. К ним можно отнести: максимальную мощность, время развертывания, время сохранения или поддержания максимальной мощности, метаболическую ёмкость (табл. 1).

Таблица 1. Количественные критерии основных путей ресинтеза АТФ (С.С. Михайлов, 2009)

Пути ресинтеза АТФКритерии
Максимальная мощность, кал/мин кгВремя развертыванияВремя сохранения максимальной мощностиМетаболическая ёмкость
Креатинфосфатный900-11001-2 с8-10 с
Гликолитический750-85020-30 с2-3 мин.При анаэробном окислении гликогена образуются 3 молекулы АТФ в расчете на одну молекулу глюкозы
Аэробный350-4503-4 мин.Десятки минутПри аэробном окислении гликогена образуются 39 молекул АТФ в расчете на одну молекулу глюкозы (самый экономичный)

Соотношение между различными путями ресинтеза АТФ

При любой мышечной работе функционируют все три основных механизма ресинтеза АТФ, но включаются они последовательно. В первые секунды ресинтез АТФ осуществляется за счет креатинфосфатной реакции, затем включается гликолиз. По мере продолжения работы на смену гликолизу приходит тканевое дыхание (рис.1). Эта смена механизмов ресинтеза АТФ приводит к уменьшению суммарной выработки АТФ.

в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть картинку в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Картинка про в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах

Рис.1. Включение путей ресинтеза АТФ при выполнении физической работы (С.С. Михайлов, 2009)

Пути ресинтеза АТФ и зоны относительной мощности

В.С. Фарфель приводит следующее соотношение мощности работы и основной системы энергообеспечения (табл.2)

Таблица 2. Зоны мощности работы и основная система энергообеспечения (В.С. Фарфель)

Источник

Гликолиз в мышечных волокнах

Дается определение одного из анаэробных путей ресинтеза АТФ в мышечных волокнах – гликолиза. Описаны количественные критерии гликолиза в мышечных волокнах : максимальная мощность, время развертывания, время работы с максимальной мощностью. Дается характеристика ключевым ферментам гликолиза, протекающего в мышечных волокнах: фосфорилазе и фосфофруктокиназе.

Гликолиз в мышечных волокнах

Определение

Под гликолизом понимается процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты (Н.И.Волков с соавт. 2000).

Гликолиз, протекающий в мышечных волокнах (гликолитический ресинтез АТФ, лактатный ресинтез АТФ) – анаэробный распад гликогена мышц до молочной кислоты (лактата).

Источником энергии, необходимой для ресинтеза АТФ является мышечный гликоген, который находится в саркоплазме мышечных волокон. Концентрация гликогена в саркоплазме составляет 0,5-2% от массы мышцы (С.С. Михайлов, 2009). Также может быть использована глюкоза, поступающая из крови (Н.И. Волков с соавт., 2000), рис.1.

в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть картинку в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Картинка про в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах

Рис. 1. Процесс гликолиза (Дж. Уилмор, Д.Л. Костилл, 1997)

Гликолиз – основной механизм энергообеспечения при работе субмаксимальной мощности длительностью 2-3 мин. Поэтому видами спорта, в которых гликолиз является основным механизмом обеспечения являются: бег на 800 – 1500 м; бег на коньках на 1500 м; плавание на 200 м и др.

Ключевыми ферментами гликолиза являются: фосфорилаза и фосфофруктокиназа. Эти ферменты регулируют скорость протекания гликолиза. Фермент фосфорилаза активируется адреналином.

Количественные критерии гликолиза в мышечных волокнах

Максимальная мощность

Максимальная мощность гликолиза составляет 750-850 кал/мин кг. Этот показатель в два раза превышает мощность тканевого дыхания. Высокие значения максимальной мощности объясняются большим количеством гликогена, содержащегося в мышечных волокнах, наличием механизмов активации ключевых ферментов гликолиза, благодаря которым скорость гликолиза возрастает в 2000 раз, отсутствием потребности в кислороде.

Время развертывания гликолиза

Время развертывания гликолиза составляет 20-30 с. Достаточно небольшое время развертывания гликолиза объясняется тем, что все участники этой реакции, а именно гликоген и ключевые ферменты находятся в саркоплазме. Кроме того, ключевой фермент гликолиза – фосфорилаза, активируется стрессовым гормоном адреналином, который выделяется в кровь непосредственно перед началом физической нагрузки. Также фермент фосфорилаза активируется ионами кальция, концентрация которых в саркоплазме повышается более чем в 1000 раз при развитии потенциала действия.

Время работы с максимальной мощностью

В покое до физической нагрузки концентрация лактата в крови составляет 1-2 ммоль/л. После физической нагрузки субмаксимальной мощности концентрация лактата в крови резко возрастает и может достигать 18-20 ммоль/л.

Если физическая активность продолжается более 20 минут, запасы гликогена в мышечных волокнах истощаются. Основным источником АТФ в мышцах становится окисление жирных кислот в митохондриях мышечных волокон. Именно по этой причине считается, что для профилактики борьбы с ожирением нужны длительные циклические нагрузки аэробного характера.

Экономичность гликолиза

Гликолиз характеризуется низкой экономичностью. Распад до молочной кислоты одного остатка глюкозы дает только три молекулы АТФ, в то время как при аэробном окислении гликогена до воды и углекислого газа образуется 39 молекул АТФ в расчете на один остаток глюкозы.

Следует отметить, что гликолиз активно протекает в мышечных волокнах IIА и IIB типа.

Источник

В каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах

в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Смотреть картинку в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Картинка про в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типах. Фото в каких мышечных волокнах глюкоза может расщепляться как аэробным так и анаэробным путем типахВсем известно, что каждый человек имеет индивидуальную мышечную композицию, то есть только ему присущее сочетание мышечных клеток (волокон) разных типов во всех скелетных мышцах. Вот только классификаций этих типов волокон несколько и они не всегда совпадают. Какие же классификации сейчас приняты?
Мышечные волокна делятся:

1. На белые и красные

2. На быстрые и медленные

3. На гликолитические, промежуточные и окислительные

4. На высокопороговые и низкопороговые

Разберем все подробно.

Белые и красные. На поперечном сечении мышечное волокно может иметь различный цвет. Он зависит от количества мышечного пигмента миоглобина в саркоплазме мышечного волокна. Если содержание миоглобина в мышечном волокне большое, то волокно имеет красно-бурый цвет. Если миоглобина мало, то бледно-розовый. У человека почти в каждой мышце содержатся белые и красные волокна, а так же волокна слабо пигментированные. Миоглобин используется для транспортировки кислорода внутри волокна от поверхности к митохондриям, соответственно его количество определяется количеством митохондрий. Увеличивая количество митохондрий в клетке специальными тренировками, мы увеличиваем количество миоглобина и изменяем цвет волокна.

Быстрые и медленные. Классифицируются по активности фермента АТФ-азы и, соответственно, по скорости сокращения мышц. Активность данного фермента наследуется и тренировке не поддается. Каждое волокно имеет свою неизменную активность этого фермента. Освобождение энергии заключенной в АТФ, осуществляется благодаря АТФ-аза. Энергии одной молекулы АТФ достаточно для одного поворота (гребка) миозиновых мостиков. Мостики расцепляются с актиновым филаментом, возвращаются в исходное положение, сцепляются с новым участком актина и делают гребок. Скорость одиночного гребка одинакова у всех мышц. Энергия АТФ в основном требуется для разъединения. Для очередного гребка требуется новая молекула АТФ. В волокнах с высокой АТФ-азной активностью расщепление АТФ происходит быстрее, и за единицу времени происходит большее количество гребков мостиками, то есть мышца сокращается быстрее.

Гликолитические, промежуточные и окислительные. Классифицируются по окислительному потенциалу мышцы, то есть по количеству митохондрий в мышечном волокне. Напомню, что митохондрии – это клеточные органеллы, в которых глюкоза или жир расщепляется до углекислого газа и воды, ресинтезируя АТФ, необходимую для ресинтеза креатинфосфата. Креатинфосфат используется для ресинтеза миофибриллярных молекул АТФ, которые необходимы для мышечного сокращения. Вне митохондрий в мышцах также может происходить расщепление глюкозы до пирувата с ресинтезом АТФ, но при этом образуется молочная кислота, которая закисляет мышцу и вызывает ее утомление.

По этому признаку мышечные волокна подразделяются на 3 группы:

1. Окислительные мышечные волокна. В них масса митохондрий так велика, что существенной прибавки ее в ходе тренировочного процесса уже не происходит.

2. Промежуточные мышечные волокна. В них масса митохондрий значительно снижена, и в мышце в процессе работы накапливается молочная кислота, однако достаточно медленно, и утомляются они гораздо медленнее, чем гликолитические.

3. Гликолитические мышечные волокна. В них очень незначительное количество митохондрий. Поэтому в них преобладает анаэробный гликолиз с накоплением молочной кислоты, отчего они и получили свое название. (Анаэробный гликолиз – расщепление глюкозы без кислорода до молочной кислоты и АТФ; аэробный гликолиз, или окисление – расщепление глюкозы в митохондриях с участием кислорода до углекислого газа, воды и АТФ.)

У не тренирующихся людей обычно быстрые волокна – гликолитические и промежуточные, а медленные – окислительные. Однако при правильных тренировках на увеличение выносливости промежуточные и часть гликолитических волокон можно сделать окислительными, и тогда они, не теряя в силе, перестанут утомляться.

Высокопороговые и низкопороговые. Классифицируются по уровню порога возбудимости двигательных единиц. Мышца сокращается под действием нервного импульса, который имеет электрическую природу. Каждая двигательная единица (ДЕ) включает в себя мотонейрон, аксон и совокупность мышечных волокон. Количество ДЕ у человека остается неизменным на протяжении всей жизни. Двигательные единицы имеют свой порог возбудимости. Если нервный импульс, посылаемый мозгом, имеет величину ниже этого порога, ДЕ пассивна. Если нервный импульс имеет пороговую для этой ДЕ величину или превышает ее, мышечные волокна сокращаются. Низкопороговые ДЕ имеют маленькие мотонейроны, тонкий аксон и сотни иннервируемых медленных мышечных волокон. Высокопороговые ДЕ имеют крупные мотонейроны, толстый аксон и тысячи иннервируемых быстрых мышечных волокон.

Как видите, две из представленных классификаций неизменны на протяжении всей жизни человека вне зависимости от тренировок, а две напрямую зависят именно от тренировок. В отсутствии двигательного режима, например в коме, или долгом нахождении в гипсе даже медленные мышечные волокна теряют свои митохондрии и соответственно миоглобин и становятся белыми и гликолитическими.

Поэтому в настоящее в спортивной науке считается неправильно говорить: «тренировки направленные на гипертрофию быстрых мышечных волокон», или «гиперплазия миофибрилл в медленных мышечных волокнах», хотя еще 10 лет назад это считалось допустимо даже в специализированных научных изданиях. Сейчас если мы говорим о тренировочном воздействии на МВ, то используем только классификацию по окислительному потенциалу мышцы. Классификации совпадают у не тренирующихся и у представителей скоростно-силовых и силовых видов спорта, где цель поднять максимальный вес в единичном повторении. В видах спорта требующих проявления выносливости классификации совпадать не будут.

Для наглядности приведу несколько утрированный, хотя теоритически вполне возможный пример. Сразу оговорюсь, что все цифры условные, и их не надо воспринимать буквально. Представим атлета, у которого лучший результат в жиме лежа 200 кг (без экипировки), 180 кг он может пожать на 3 раза, 150 кг на 10 раз. Из результатов видно, что окислительный потенциал мышц очень низок. Соотношение волокон, предположим, следующее: 90% быстрые, 10% медленные. По окислительному потенциалу 75% гликолитические, 15% промежуточные и 10% окислительные. Наилучших успехов в увеличении мышечной массы спортсмен добивается, когда работает в жиме по 6 повторений. Вес штанги достаточно большой чтобы рекрутировать 75% гликолитических волокон, а окислительный потенциал их настолько низок, что и 6-и повторений достаточно для необходимого закисления мышцы.

Но вот по какой-то причине этот атлет решил максимально увеличить свою выносливость и два месяца по 2-3 раза в день ежедневно работал над увеличением митохондрий в гликолитических и промежуточных МВ. Подробно об этой методике вы можете прочитать в 5-м номере «ЖМ», в моей статье «Тренировка выносливости». Плюс к этому атлет еще поддерживал свой силовой потенциал, выполняя по 1-2 повторениям с околомаксимальным весом раз в 7-10 дней. Два месяца достаточно для предельного насыщения мышц митохондриями. Через два месяца спортсмен проводит тестирование. Оно показывает, что сейчас у него 5% гликолитических волокон, 70% промежуточных и 25% окислительных. То есть гликолитические стали промежуточными, кроме 5% самых высокопороговых, а промежуточные стали окислительными. По активности АТФ-азы соотношение естественно не изменилось, так же 90% быстрые и 10% медленные. 200 кг он выжал на 1 раз, миофибриллы от таких тренировок не выросли, а упасть результату он не дал, используя в тренировках ММУ. 180 кг он выжал на 8 раз, а 150 кг на 25 раз. Огромное количество новых митохондрий «съедало» молочную кислоту не давая мышцам закислиться, что значительно увеличило их функциональность.
Теперь нашему атлету для увеличения мышечной массы работа на 6 повторений практически ничего не даст. Она задействует в нужном режиме только 5% оставшихся гликолитических волокон.

Сейчас ему придется работать минимум по 15 повторений в подходе, чтобы добиться необходимого для роста мышечной массы закисления мышц. И, дополнительно, включить в тренировку стато-динамические упражнения, поскольку только они способствуют гипертрофии окислительных мышечных волокон, которых у него теперь 25%, и игнорировать их уже нецелесообразно.

Как мы видим, один и тот же человек вынужден использовать абсолютно разные тренировочные программы для гипертрофии своих быстрых мышечных волокон после изменения их окислительного потенциала! Вот поэтому говорить о тренировочном воздействии на типы волокон, используя классификацию по активности АТФ-зы, считается некорректным. Только классификация по окислительным способностям мышц!

Источник

Типы мышечных волокон

Описаны различные типы мышечных волокон, а также гистологические и гистохимические методы их классификации. Дана характеристика различных типов мышечных волокон, описаны их функции, а также расположение в скелетной мышце.

Типы мышечных волокон

Классификации мышечных волокон

В настоящее время общепринято считать, что у человека скелетные мышцы состоят из волокон различных типов. Существуют различные классификации типов мышечных волокон. Различают волокна: красные и белые, медленные и быстрые, тонические и фазические. В середине ХХ века для разделения мышечных волокон на разные типы использовались гистологические методы (А.В. Самсонова с соавт., 2012). Из скелетных мышц посредством биопсии извлекался кусочек мышечной ткани, быстро замораживался и разрезался на тонкие слои. Затем производилось исследование мышечной ткани под микроскопом. Первоначально критерием разделения мышечных волокон на медленные и быстрые являлось количество и расположение митохондрий. Затем предпочтение стали отдавать такому показателю как толщина Z-дисков. Было найдено, что у медленных волокон Z-диски существенно толще, чем у быстрых. В качестве еще одного критерия разделения мышечных волокон на типы использовалась толщина М-диска. При продольных срезах расслабленной скелетной мышцы видно, что медленные мышечные волокна содержат пять М-линий, имеющих одинаковую плотность. Промежуточные мышечные волокна – три линии средней плотности, ясно видимые и две линии, имеющие небольшую плотность. В быстрых мышечных волокнах имеются три линии средней плотности и две внешние, едва различимые.

В настоящее время чаще всего используется классификация M.Brook, K.Kaiser (1970), которая основывается на гистохимических методах.

Более подробно строение и функции мышц описаны в моих книгах «Гипертрофия скелетных мышц человека» и «Биомеханика мышц«

Известно, что миофибриллы состоят из саркомеров, а те, в свою очередь – из толстых и тонких филаментов. Основу толстых филаментов составляет белок миозин, а основу тонких – белок актин.

Гистохимические методы основаны на определении активности фермента АТФ-азы миозина. Этот фермент расположен на головках молекул миозина. Фермент АТФ-аза осуществляет высвобождение энергии, необходимой для осуществления сокращения мышечного волокна. Степень активности АТФ-азы варьирует в широких пределах. Установлено, что степень активности АТФ-азы миозина связана с типом миозина, содержащемся в мышечном волокне. В медленных мышечных волокнах активность АТФ-азы низкая, а в быстрых – высокая. Именно высокая активность АТФ-азы миозина способствует высокой скорости сокращения мышечных волокон.

На основе классификации по активности АТФ-азы миозина различают мышечные волокна типа I, типа IIA и типа IIB.

Характеристики мышечных волокон

Медленные и быстрые мышечные волокна различаются метаболизмом, что проявляется в активности ферментов и количестве митохондрий. Медленные мышечные волокна окружены большим числом крупных митохондрий с набором ферментов, катализирующих распад углеводов и жирных кислот. Поскольку этот процесс требует притока большого количества кислорода, вполне естественно, что сеть капилляров, окружающая медленные мышечные волокна более развита и снабжение кислородом, доставленным с током крови, в этих волокнах происходит более интенсивно. В этих волокнах крайне ограничен запас углеводов в виде гликогена и низка активность ферментов гликолиза (М.И. Калинский, В.А. Рогозкин, 1989).

Быстрые волокна типа IIA и IIB характеризуются высокой активностью АТФ-азы миозина, поэтому скорость их сокращения практически в два раза выше, чем у медленных. С высокой скоростью сокращения связан хорошо развитый саркоплазматический ретикулум, который характерен для быстрых мышечных волокон, так как он содержит ионы кальция, необходимые для сокращения мышечного волокна.

Волокна типа IIA имеют набор ферментов для полного окисления углеводов и жирных кислот, такой же, как и в медленных волокнах и к тому же они располагают ферментами гликолиза, то есть способностью расщеплять углеводы до молочной кислоты. Быстрые мышечные волокна типа IIB способны к коротким периодам сократительной активности. Они имеют набор ферментов гликолиза с высокой активностью и небольшое количество митохондрий с окислительными ферментами. Быстрые мышечные волокна типа IIA и IIB имеют большие запасы гликогена, который сразу используется в качестве источника энергии при сокращении скелетной мышцы (табл.1).

Таблица 1 Характеристики мышечных волокон различных типов

ХарактеристикаI типIIА типIIВ тип
Название мышечных волоконКрасные, медленные, устойчивые к утомлению, окислительныеПромежуточные, быстрые, устойчивые к утомлению, окислительно-гликолитическиеБелые, быстрые, быстроутомляемые, гликолитические, анаэробные
Размер мотонейронамалыйБольшойБольшой
Активность АТФ-азы миозинанизкаяВысокаяВысокая
Саркоплазматический ретикулумСлабо развитСреднее развитиеХорошо развит
Плотность капилляровВысокаяВысокаяНизкая
Количество миоглобинаМногоСреднеМало
Количество митохондрийМногоСреднеМало
Размеры митохондрийОчень большиеСредниеНебольшие
Активность ферментов митохондрийБольшаяБольшаяНизкая
Сопротивление утомлениюВысокоеСреднееОчень низкое
Запасы гликогенаНизкиеБольшиеБольшие
Гликолитическая способностьНизкаяБольшаяБольшая
Скорость сокращенияНизкаяВысокаяВысокая
Площадь поперечного сечения мышечного волокнаНебольшаяБольшаяБольшая
Максимальная силаНебольшаяБольшаяОчень большая

Функции мышечных волокон

Основная функция волокон типа I – выполнение длительной работы низкой интенсивности. Они активны также при поддержании позы. Поэтому антигравитационные мышцы в основном состоят из медленных волокон типа I.

Основная функция мышечных волокон типа II – выполнение быстрых и сильных сокращений.

Расположение мышечных волокон различных типов в скелетных мышцах

Мышечные волокна объединены в пучки. Их покрывает перимизий. Пучок содержит мышечные волокна различных типов. В пучке мышечные волокна расположены в виде мозаики. Однако доказано, что внутри мышцы больше мышечных волокон типа I, а снаружи – мышечных волокон типа II.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *