Кристаллизация гемоглобина что это

Гликозилированный гемоглобин

Очень важно при ведении больных сахарным диабетом добиться оптимального содержания глюкозы в крови. Контроль уровня глюкозы в крови больной может проводить самостоятельно (портативными глюкометрами) или в лаборатории.

Характеристика показателя

Гликозилированный гемоглобин (употребляется также термин «гликированный гемоглобин») образуется в результате неферментативного присоединения глюкозы к N-концевым участкам β-цепей глобина гемоглобина А1 и обозначается как HbA1c. Концентрация HbA1c прямо пропорциональна средней концентрации глюкозы в крови. У здоровых концентрация HbA1c в крови от 4 до 6%, у больных сахарным диабетом его уровень в 2-3 раза выше (в зависимости от степени гипергликемии).

Образовавшийся HbA1 cаккумулируется внутри эритроцитов и сохраняется в течение всего срока жизни эритроцита. Полупериод циркуляции эритроцита в кровяном русле составляет 60 суток, таким образом, концентрация HbA1c отражает уровень гликемии пациента за 60-90 дней до исследования [2, 3].

Огромное число исследований с использованием традиционных методов измерения содержания глюкозы подтвердило взаимосвязь HbA1c и уровня гликемии пациента 12. Результаты исследований, проведенных DCCT в 90-х годах, послужили основанием для подтверждения гипотезы о том, что уровень HbA1c отражает уровень глюкозы в крови и является эффективным критерием при мониторинге больных сахарным диабетом.

Стандартизация методов исследования гликозилированного гемоглобина

В начале 90-х годов не существовало межлабораторной стандартизации методов измерения гликозилированного гемоглобина, что снижало клиническую эффективность использования данного теста 15. В связи с этим Американская Ассоциация клинической химии в 1993 году сформировала подкомитет по стандартизации методов измерения гликозилированного гемоглобина. В результате его работы была разработана Национальная программа по стандартизации исследований гликозилированного гемоглобина (NGSP). Производителей тест-систем для измерения гликозилированного гемоглобина обязали проходить строжайшую проверку на соответствие результатов с данными, полученными референсными методами DCCT. В случае положительного результата проверки производителю выдается «сертификат соответствия DCCT». Американская Диабетическая Ассоциация рекомендует всем лабораториям пользоваться только тестами, сертифицированными NGSP [7].

При выборе лабораторией анализатора для исследования гликозилированного гемоглобина преимущество должно отдаваться анализаторам на основе референсного метода DCCT, каким является жидкостная хроматография. Использование стандартизированных методов исследования дает лаборатории возможность получать результаты, которые можно сравнивать с данными, полученными с помощью референсных методов и опубликованными DCCT. Такое сравнение максимально повышает достоверность результатов исследований.

Чрезвычайно важно, чтобы лечащий врач использовал в своей работе результаты исследований, полученные только в тех лабораториях, которые проводят исследование гликозилированного гемоглобина методами сертифицированными NGSP.

Исследование концентрации HbA1c в лабораториях Ассоциации «Ситилаб»

Оценка среднего содержания глюкозы в крови

Исследовательская группа при DCCT продемонстрировала клиническую значимость показателя HbA1c, как оценку средней концентрации глюкозы в крови (за 60-90 дней). В этих исследованиях у пациентов раз в 3 месяца регистрировали дневной профиль содержания глюкозы (по семи измерениям ежедневно). Полученный профиль сопоставляли с уровнемHbA1c. В течение 9 лет было проведено более 36 000 исследований. Эмпирически была получена линейная зависимость среднего содержания глюкозы и уровня HbA1c:

Средняя концентрация глюкозы (мг/100 мл)=30,9 х (HbA1c)-60,6, где:

Проще говоря, изменение HbA1c на 1% соответствует изменению среднего содержания глюкозы на 30 мг/100 мл (1,7 ммоль/л).

Примечание: Указанная взаимосвязь была получена при исследовании концентрации глюкозы в капиллярной крови. Концентрация глюкозы в сыворотке крови приблизительно на 15% выше.

Для интерпретации результатов исследований HbA1c может быть использована диаграмма (рис. 1) [11].

Рис. 1. Диаграмма контроля углеводного обмена у больных сахарным диабетом

Для пересчета концентрации глюкозы в мг/100 мл в единицы СИ (ммоль/л) используется следующая формула:

Глюкоза (мг/100 мл) х 0,0555 = Глюкоза (ммоль/л)

Рекомендуемая частота проведения исследования

Американская Диабетическая Ассоциация рекомендует для пациентов, чья терапия была успешной (стабильный уровень углеводного обмена), проводить исследование HbA1c не реже 2-х раз в год, тогда как в случае изменения диеты или лечения следует увеличить частоту обследования до 4-х раз в год [7]. В Российской Федерации, согласно Целевой Федеральной программе «Сахарный диабет», исследование HbA1c должно проводиться 4 раза в год при любом типе диабета [1].

Согласно рекомендациям Американской Диабетической Ассоциации, женщины, больные сахарным диабетом, в период предшествующий беременности, нуждаются в специальном режиме мониторинга. Рекомендуется снизить уровень HbA1c для создания в организме будущей матери оптимальных условий для зачатия и развития плода. В начале HbA1cнеобходимо исследовать ежемесячно. Когда при соответствующей терапии углеводный обмен стабилизируется, исследование HbA1c необходимо проводить с интервалом 6-8 недель до момента зачатия [5, 6].

Современные исследования показали, что многие пациенты не соблюдают рекомендованный интервал между исследованиями [8], однако эксперты пришли к общему мнению, что регулярные исследования содержания HbA1c существенно снижают риск развития осложнений у больных сахарным диабетом.

Интерпретация результатов исследования

Ниже представлены терапевтические цели при лечении сахарного диабета по данным Целевой Федеральной программы «Сахарный диабет».

Терапевтические цели при лечении сахарного диабета 1 типа [1, 18]

Источник

Гемоглобин: модификации, кристаллизация, полимеризация (обзор)

Полный текст:

Аннотация

Цель обзора: привести наиболее значимые модификации и превращения молекулы гемоглобина, которые могут быть использованы для выработки стратегии реанимационных мероприятий и лечения жизненно опасных видов анемий. Гемоглобин — один из наиболее хорошо изученных белков. В обзоре показана история исследования гемоглобина, начиная с 1839 г. по настоящее время. Приведены методы исследования гемоглобина: электрофорез, спектрофотометрический метод, метод рентгеноструктурного анализа, атомносиловая микроскопия. Описаны основные формы гемоглобина: окигемоглобин, дезоксигемоглобин, метгемоглобин, а также процессы кристаллизации и полимеризации этого белка. Многие формы гемоглобина обладают способностью к образованию кристаллов или полимеров in vitro, некоторые патологические формы могут модифицироваться in vivo. Исследование механизмов структурирования различных форм гемоглобина является актуальной и важной задачей фундаментальной науки.

Ключевые слова

Об авторах

10703, г. Москва, ул. Петровка, д. 25, стр. 2

119234, г. Москва, Университетская пл., д. 1

Список литературы

1. Антонов В.Ф., Черныш А.М., Козлова Е.К. Физика и биофизика. М.: ГЭОТАРМедиа; 2015: 472.

2. Блюменфельд Л.А. Гемоглобин. Соросовский образовательный журнал. 1998; 4: 33–38.

3. Giege R. A historical perspective on protein crystallization from 1840 to the present day. FEBS J. 2013; 280 (24): 6456–6497. http://dx.doi.org/10.1111/febs.12580. PMID: 24165393

4. Schechter A.N. Hemoglobin research and the origins of molecular medicine. Blood. 2008; 112 (10): 3927–3938. http://dx.doi.org/10.1182/blood200804078188. PMID: 18988877

5. Thoreson C.K., O’Connor M.Y., Ricks M., Chung S.T., Sumner A.E. Sickle cell trait from a metabolic, renal, and vascular perspective: linking history, knowledge, and health. J. Racial. Ethn. Health Disparities. 2015; 2 (3): 330–335. http://dx.doi.org/10.1007/s4061501400774. PMID: 26322267

6. Hardison R.C. Evolution of hemoglobin and its genes. Cold Spring Harb. Perspect. Med. 2012; 2 (12): a011627. http://dx.doi.org/10.1101/ cshperspect.a011627. PMID: 23209182

7. Волькенштейн М.В. Молекулярная биофизика. М.: Наука; 1975: 616.

8. Winter W.P. A brief history of sickle cell disease. http://www.sicklecell.howard.edu/ABriefHistoryofSickleCellDisease.htm

9. Gormley M. It’s in the blood: the varieties of Linus Pauling’s work on hemoglobin and sickle cell anemia. http://scarc.library.oregonstate.edu/

10. Frenette P.S., Atweh G.F. Sickle cell disease: old discoveries, new concepts, and future promise. J. Clin. Invest. 2007; 117 (4): 850–858. http://dx.doi.org/ 10.1172/JCI30920. PMID: 17404610

11. Bender M.A., Douthitt Seibel G. Sickle cell disease. Gene Reviews. 2003; 1993–2016. PMID: 20301551

12. Ralstrom E., da Fonseca M.A., Rhodes M., Amini H. The impact of sick le cell disease on oral healthrelated quality of life. Pediatr. Dent. 2014; 36 (1): 24–28. PMID: 24717705

13. Bookchin R.M., Balazs T., Wang Z., Josephs R., Lew V.L. Polymer structure and solubility of deoxyhemoglobin S in the presence of high concentrations of volumeexcluding 70kDa dextran. Effects of nons hemoglobins and inhibitors. J. Biol. Chem. 1999; 274 (10): 6689– 6697. PMID: 10037766

14. Wilson S., Makinen M. Electron microscope study of the kinetics of the fibertocrystal transition of sickle cell hemoglobin. Proc. Natl. Acad. Sci. USA. 1980; 77 (2): 944–948. http://dx.doi.org/10.1073/pnas.77.2.944. PMID: 6928690

15. Fabry M.E. Detection of hemoglobin S polymerization in intact red cells by P31 NMR. Biochem. Biophys. Res. Commun. 1980; 97 (4): 1399–1406. http://dx.doi.org/10.1016/S0006291X(80)800222.PMID: 7213366

16. Fabry M.E., Kaul D.K., Raventos C., Baez S., Rieder R., Nagel R.L. Some aspects of the pathophysiology of homozygous HbCC erythrocytes. J. Clin. Invest. 1981; 67 (5): 1284–1291. PMID: 7229029

17. FeelingTaylor A.R., Yau S.T., Petsev D.N., Nagel R.L., Hirsch R.E., Vekilov P.G. Crystallization mechanisms of hemoglobin C in the R state. Biophys. J. 2004; 87 (4): 2621– 2629. http://dx.doi.org/10.1529/biophysj.104.039743. PMID: 15454456

18. Baptista L.C., Costa M.L., Ferreira R., Albuquerque D.M., Lanaro C., Fertrin K.Y., Surita F.G., Parpinelli M.A., Costa F.F., Melo M.В. Abnormal expression of inflammatory genes in placentas of women with sickle cell anemia and sickle hemoglobin C disease. Ann. Hematol. 2016; 95 (11): 1859–1867. http://dx.doi.org/ 10.1007/s0027701627801.PMID: 27546026

19. Bain B.J. Hemoglobin C disease. Am. J. Hematol. 2015; 90 (2): 174. http://dx.doi.org/10.1002/ajh.23915. PMID: 25488433

20. Steinberg M.H., Chui D.H. HbC disorders. Blood. 2013; 122 (22): 3698. http://dx.doi.org/10.1182/blood201309526764. PMID: 24263962

21. Dalia S., Zhang L. Homozygous hemoglobin C disease. Blood. 2013; 122 (10): 1694. http://dx.doi.org/10.1182/blood201304498188. PMID: 24137818

22. Kozlova E., Chernysh A., Moroz V., Sergunova V., Zavialova A., Kuzovlev A. Nanoparticles of perfluorocarbon emulsion contribute to the reduction of methemoglobin to oxyhemoglobin. Int. J. Pharm. 2016; 497 (1–2); 88–95. http://dx.doi.org/ 10.1016/j.ijpharm.2015.11.035. PMID: 26626224

23. Safo M.K., Abraham D.J. Xray crystallography of hemoglobins. Hemoglobin disorders. Methods Mol. Biol. 2003; 82: 1–19. http://dx.doi.org/10.1385/1592593739:001

24. Perutz M.F. Preparation of haemoglobin crystals. J. Cryst. Growth. 1968; 2 (1); 54–56. http://dx.doi.org/10.1016/00220248(68)900717

25. Parashar V., Jeffrey P.D., Neiditch M.B. Conformational change induced repeat domain expansion regulates rap phosphatase quorum sensing signal receptors. PLoS Biol. 2013; 11 (3): e1001512. http://dx.doi.org/ 10.1371/journal.pbio.1001512. PMID: 23526881

26. Shultis D., Dodge G., Zhang Y. Crystal structure of designed PX domain from cytokineindependent survival kinase and implications on evolutionbased protein engineering. J. Struct. Biol. 2015; 191 (2): 197–206. http://dx.doi.org/ 10.1016/j.jsb.2015.06.009. PMID: 26073968

27. Martiny V.Y., Carbonell P., Lagorce D., Villoutreix B.O., Moroy G., Miteva M.A. In silico mechanistic profiling to probe small molecule binding to sulfotransferases. PloS One. 2013; 8 (9): e73587. http://dx.doi.org/ 10.1371/journal.pone.0073587. PMID: 24039991

28. Мороз В.В., Козлова Е.К., Черныш А.М., Гудкова О.Е., Бушуева А.В. Изменение структуры мембран эритроцитов при действии гемина. Общая реаниматология. 2012; 8 (6): 5–10. http://dx.doi.org/10.15360/1813977920126

29. Kozlova E., Chernysh A., Moroz V., Gudkova O., Sergunova V., Kuzovlev A. Transformation of membrane nanosurface of red blood cells under hemin action. Sci. Rep. 2014; 4; 6033. http://dx.doi.org/10.1038/srep06033. PMID: 25112597

30. Wood B.R., AsghariKhiavi M., Bailo E., McNaughton D., Deckert V. Detection of nanooxidation sites on the surface of hemoglobin crystals using tipenhanced raman scattering. Nano Lett. 2012; 12 (3): 1555–1556. http://dx.doi.org/ 10.1021/nl2044106. PMID: 22324311

31. Голубев А.М., Мороз В.В., Козлова Е.К., Сергунова В.А., Гудкова О.Е., Голубев М.А., Калиниченко В.Н., Черныш А.М. Наноструктура интимы аорты человека при развитии атеросклероза (поисковоэкспериментальное исследование). Общая реаниматология. 2016; 12 (5): 8–15. http://dx.doi.org/ 10.15360/1813977920165818

32. Сергунова В.А., Козлова Е.К., Мягкова Е.А., Черныш А.М. Измерение упругоэластичных свойств мембраны нативных эритроцитов in vitro. Общая реаниматология. 2015; 11 (3): 39–44. http://dx.doi.org/10.15360/1813977920153

33. Черныш А.М., Белопахов Д.С., Беляевская А.А., Закарян А.В., Куприянова М.С., Постников М.А., Сергеенко Е.В., Шогенов И.М. Научный практикум для студентов по специальности «медицинская физика». Общая реаниматология. 2016; 12 (4): 79–88. http://dx.doi.org/10.15360/1813977920164

34. Мороз В.В., Черныш А.М., Козлова Е.К., Сергунова В.А., Гудкова О.Е., Федорова М.С., Кирсанова А.К., Новодержкина И.С. Нарушение на ноструктуры мембран эритроцитов при острой кровопотере и их коррекция перфторуглеродной эмульсией. Общая реаниматология. 2011; 7 (2): 5–9. http://dx.doi.org/10.15360/1813977920112

35. Козлова Е.К., Черныш А.М., Мороз В.В., Кузовлев А.Н., Сергунова В.А. Действие ионов цинка на мембраны красных клеток крови in vitro. Мед. физика. 2011; 4: 43–49.

36. Перепелица С.А., Сергунова В.А., Гудкова О.Е., Алексеева С.В. Особенности мембран эритроцитов недоношенных новорожденных при многоплодной беременности. Общая реаниматология. 2014; 10 (1): 12–18. http://dx.doi.org/10.15360/1813977920141

37. Мороз В.В., Черныш А.М., Козлова Е.К., Сергунова В.А., Гудкова О.Е., Хорошилов С.Е., Онуфриевич А.Д., Костин А.И. Нарушения морфологии и наноструктуры мембран эритроцитов при длительном хранении эритроцитарной взвеси (исследование при помощи атомной силовой микроскопии). Бюл. эксперим. биологии и медицины. 2015; 159 (3): 390–394. http://dx.doi.org/10.1007/s1051701529759. PMID: 26212816

38. Перепелица С.А., Сергунова В.А., Алексеева С.В., Гудкова О.Е. Морфология эритроцитов при изоиммунизации новорожденных по резусфактору и авосистеме. Общая реаниматология. 2015; 11 (2): 25–34. http://dx.doi.org/10.15360/18139779201522534

39. Nagel R.L., Fabry M.E., Steinberg M.H. The paradox of hemoglobin SC disease. Blood Rev. 2003; 17 (3): 167–178. http://dx.doi.org/10.1016/S0268960X(03)000031. PMID: 12818227

40. Hirsch R.E., Samuel R.E., Fataliev N.A., Pollack M.J., Galkin O., Vekilov P.G., Nagel R.L. Differential pathways in oxy and deoxy HbC aggrega tion/crystallization. Proteins. 2001; 42 (1): 99–107. http://dx.doi.org/10.1002/10970134(20010101)42:1%3C99::AIDPROT100%3E3.0.CO;2R. PMID: 11093264

41. Leunissen M.E. Protein crystallization. Nijmegen University; 2001: 44.

42. Ketchum M.A., Olafson K.N., Petrova E.V., Rimer J.D., Vekilov P.G. Hematin crystallization from aqueous and organic solvents. J. Chem. Phys. 2013; 139 (12): 121911. http://dx.doi.org/10.1063/1.4816106.PMID: 24089723

43. Hekmat D. Largescale crystallization of proteins for purification and formulation. Bioprocess. Biosyst. Eng. 2015; 38 (7): 1209–1231. http://dx.doi.org/10.1007/s004490151374y. PMID: 25700885

44. Boor A.K. A crystallographic study of pure carbonmonoxide hemoglobin. J. Gen. Physiol. 1930; 13 (3): 307–316. PMID: 19872525

45. Bessie M., Weed R.I., Leblond P.F. (eds.). Red blood cell shapes: physiology, pathology, ultrastructure. Berlin, Heidelberg, New York: Springer; 1973: 147.

46. Kozlova E., Chernysh A., Moroz V., Sergunova V., Gudkova O., Fedorova M., Kuzovlev A. Opposite effects of electroporation of red blood cell membranes under the influence of zinc ions. Acta Bioeng. Biomech. 2012; 14 (1): 3–13. PMID: 22741531

47. Strasser B.J. Collecting, comparing, and computing sequences: the making of Margaret O. Dayhoff’s Atlas of Protein Sequence and Structure, 1954–1965. J. Hist. Biol. 2010; 43 (4): 623–660. http://dx.doi.org/10.1007/s1073900992210. PMID: 20665074

48. Arie T., Fairhurst R.M., Brittain N.J., Wellems T.E., Dvorak J.A. Hemoglobin C modulates the surface topography of Plasmodium falci paruminfected erythrocytes. J. Struct. Biol. 2005; 150 (2): 163–169. http://dx.doi.org/10.1016/j.jsb.2005.02.008. PMID: 15866739

49. Pumphrey J.G., Steinhardt J. Crystallization of sickle hemoglobin from gently agitated solutions an alternative to gelation. J. Mol. Biol. 1977; 112 (3): 359–375. http://dx.doi.org/10.1016/S00222836(77)801873. PMID: 875023

Для цитирования:

Сергунова В.А., Манченко Е.А., Гудкова О.Е. Гемоглобин: модификации, кристаллизация, полимеризация (обзор). Общая реаниматология. 2016;12(6):49-63. https://doi.org/10.15360/1813-9779-2016-6-49-63

For citation:

Sergunova V.A., Manchenko E.A., Gudkova O.Y. Hemoglobin: Modification, Crystallization, Polymerization (Review). General Reanimatology. 2016;12(6):49-63. https://doi.org/10.15360/1813-9779-2016-6-49-63

Источник

Кристаллизация гемоглобина что это

Кристаллизация гемоглобина что это. Смотреть фото Кристаллизация гемоглобина что это. Смотреть картинку Кристаллизация гемоглобина что это. Картинка про Кристаллизация гемоглобина что это. Фото Кристаллизация гемоглобина что это

Крупнейшее событие в ходе эволюции нашей планеты – открытие процесса фотосинтеза – повлекло за собой неизбежное изменение состава земной атмосферы в плане увеличения доли молекулярного кислорода. Появление такого эффективного биологического окислителя, как О2, дало гетеротрофным организмам возможность более эффективного извлечения энергии органических связей путем дыхания. Последовавшее затем возникновение крупных многоклеточных привело к проблеме транспорта кислорода в ткани биологических систем. Но, поскольку кислород очень плохо растворим в воде (всего 4,9 мл газа в 100 мл Н2О), очевидным решением этой проблемы стало появление гуморальных посредников, доставляющих дыхательные газы по адресу. Таким образом, в ходе эволюционного прогресса у большинства многоклеточных сформировалась система белковых дыхательных пигментов, главным из которых является гемоглобин (Hb) [1–3].

Гемоглобин (Hb) (от греч. haemo – кровь и лат. globus – шар), красный железосодержащий хромопротеин, обнаруженный у всех эукариотических организмов, от одноклеточных (дрожжи и др.) до беспозвоночных и высших позвоночных животных. Он способен обратимо связывать молекулярный кислород в количестве 20 мг О2, на 100 мл крови [4]. В биологических системах Hb выполняет две важнейшие функции: а) транспорт дыхательных газов; б) поддержание кислотно-основного равновесия (стоит заметить, что гемоглобиновый буфер является самым мощным в организме (примерно 3/4 от общей буферной емкости крови) [5].

Гемоглобин называют модельным белком, свойства, функции и структура которого наиболее полно изучены по сравнению с другими протеинами человека. Отмечая ключевую роль этого хромопротеина в системе дыхания, непревзойденный гемоглобинолог Макс Перутц назвал Hb «молекулярным легким» [6].

Гемоглобин – внутриклеточный компонент. На его долю приходится 90 % всего белка красных кровяных телец. Примечательно, что в собственном метаболизме эритроцита кислород не используется [7]. Молекулярная масса большинства изотипов этого пигмента колеблется в пределах 64,5–68 кД. Размер – 6,8 нм. pI – 6,8. Первичная структура характеризуется высоким содержанием гистидина [4, 8].

Все типы гемоглобина являются тетрамерами, построенными из пары α-субъединиц, и специфической для каждого типа иной пары. Каждый из четырех протомеров построен из двух неравных частей: небелковая структура – гем (4 % массы молекулы Hb, обеспечивает окраску и ковалентную связь с кислородом) и белковая глобула – глобин (96 % массы, чаще представлен либо 141 (α-цепь), либо 146 (β-, γ-, δ-цепи) аминокислотными остатками) [4, 8].

Комплекс, составленный из одной глобиновой субъединицы и одного гема, называется Сведберговой единицей. Таким образом, молекула Hb построена из четырех Сведберговых единиц, слабо связанных между собой нековалентными связями (гидрофобными, электростатическими, водородными) [8].

Синтез гема происходит в митохондриях. Глобин, как и любой белок, синтезируется на рибосомах. Их объединение в мультимер осуществляется в фазу созревания полихроматофильного нормобласта [9].

Лигандом молекулы гемоглобина, присоединяющим кислород, является ион Fe2+. Это взаимодействие обратимо и зависит от парциального давления O2. В артериальной крови практически весь Hb (95–98 %) связан с кислородом. В венозной крови содержание оксигемоглобина составляет 67–75 %, остальная часть приходится на долю свободного (редуцированного) Hb [1, 4, 5].

Норма общего Hb в крови у мужчин составляет 135–170 г/л, у женщин – 120–150 г/л [10].

В крови у новорожденного содержится 140–190 г/л этого белка, но к концу первого месяца его уровень снижается до нормального для взрослого. Динамика средней концентрации Hb крови в период от рождения до 12 лет представлена в таблице [9].

Средние уровни Hb в крови в раннем постнатальном периоде

В плане градации Hb выделяют:

? нормальные формы: восстановленный (редуцированный) Hb, оксигенированный Hb, карбгемоглобин и метгемоглобин.

? производные: карбоксигемоглобин, сульфгемоглобин, метгемоглобин, циангемоглобин и др.

? типы (изотипы) – принципиально различные подвиды Hb, кодирующиеся отдельными генами, различающиеся строением протомеров глобина. Очевидно, гемоглобины разных типов отличаются первичной, вторичной, третичной и четвертичной структурами [10].

К основным типам гемоглобина человека относятся следующие:

? HbА1 – является преобладающим в крови взрослого (98 % от общего Hb). Тетрамер, его молекула построена из двух α- и двух β-субъединиц (141 и 146 аминокислотных остатков соответственно). Его синтез начинается уже на 6–8 неделях гестации и продолжается до конца жизни [8, 11].

? HbА2 (минорный, 2 α- и 2δ-протомера). Его концентрация в крови взрослого 1,5–3,5 % от общего Hb. Уровень этого изотипа возрастает при гипохромных и мегалобластных анемиях, серповидноклеточной анемии, β-талассемии. Снижение его концентрации в крови отмечается при δ-талассемии, гемоглобинопатии Н, эритролейкозе [8, 9, 11].

? Примитивный (эмбриональный) Hb (HbР). Обладает более высокой (чем HbA1) тропностью к О2. Является самым ранним гемоглобином эмбриона. Синтезируется в раннем эмбриогенезе (с 4 по 12 нед) в желточном мешке [8, 11].

? Плодовый (фетальный) гемоглобин (HbF, тетрамер, 2 α- и 2 γ-цепи). Его продукция начинается с 12-й недели внутриутробного развития, и к 6 месяцам полностью замещает HbP в крови. К моменту рождения концентрация HbF составляет 55–85 % от общего. В крови взрослого человека его доля составляет 1,5 % от общего Hb [8, 11].

a-, b-, g- и d-гены гемоглобина расположены на коротких плечах 11-й и 16-й хромосом [11, 12].

Известно около 200 патологических типов Hb, причиной возникновения которых являются мутации. Данные протеины регистрируются в крови человека при состояниях, называемых гемоглобинопатиями (M Hyde Parc, Bristol, Sydney и др.) [13–15].

По причине стремительного прогресса биохимических методик индикации, в последние годы роль отдельных типов гемоглобина, как диагностических и прогностических маркеров, приобретает все большее прикладное значение.

Особо следует сказать о методологии количественного определения гемоглобинов. В большинстве стран в качестве общепринятых применяются колориметрические методы, рекомендованные комитетом по стандартизации Европейского и Международного общества по гематологии (1964), среди которых доминирующим является унифицированный гемоглобинцианидный метод. Оптические способы обнаружения гемоглобинов практичны, доступны и просты, но имеют существенный недостаток: они имеют низкую селективность, не позволяющую регистрировать отдельные типы гемоглобина [9, 10].

Существуют также методики лабораторного количественного анализа гемоглобинов путем электрофореза в агарозе, крахмальном геле, ацетате целлюлозы и др. Но они является полуселективными, так как определяют только фракции гемоглобинов со сходной электрофоретической подвижностью, а не индивидуальные типы этого белка [10].

В последние десятилетия в медицинской практике наблюдается тенденция перехода от регистрации фракций веществ (общий белок, общий гемоглобин и др.) к определению отдельных форм вещества. Такой подход повышает качество диагностики и прогностической оценки. Очевидно, медицина XXI века нуждается в принципиально новых технологиях тестирования гемоглобинового профиля по каждому из основных его изотипов [16].

Наиболее адекватно отвечают вышеуказанным требованиям уже давно известные иммунохимические методы определения белков (ИФА, иммунофлюоресценция, иммуноблоттинг, методика Манчини и др.). Они до сих пор остаются максимально специфичными, точными, чувствительными и надежными [10, 16].

Попытки моделирования иммунохимических методов количественного анализа некоторых фракций гемоглобинового профиля предпринимались еще с начала прошлого столетия. В данных работах исследователи исходили из убеждения, что разработка и внедрение в клиническую диагностику иммунохимических диагностических тест-систем на значимые типы гемоглобина целесообразно и актуально, так как значительно оптимизирует и облегчит лабораторную оценку статуса красной крови. В дальнейшем научный интерес в этом направлении был снижен вследствие внедрения в международную клиническую практику оптических циангемоглобиновых методов индикации. Но в последние десятилетия, в связи с усовершенствованием иммунохимических методик и ростом научного интереса к отдельным компонентам гемоглобинового спектра с одной стороны, ростом потребности в специфических диагностических тестах на конкретные типы этого протеина, с другой стороны, отмечается активизация работы немногочисленных научных групп по разработке и внедрению в медицинскую практику новых, современных иммунохимических тест-систем на различные генотипы гемоглобина человека [17–19].

Определение количества Hb в крови имеет большое клиническое значение. Снижение его концентрации отмечается при анемиях различной этиологии. Повышение Hb крови может быть как физиологическим, так и патологическим. Умеренные повышения встречаются при гемолитических анемиях, анемии Кули, гемоглобинозе С и др. Значительные увеличения встречаются при всех гемоглобинуриях [4, 8, 20].

Существует множество нозологических форм, при которых имеет важное значение не только изменение количества общего гемоглобина крови, но и отдельных его типов, изменение соотношения которых в клинической практике используют для диагностики различных патологических состояний [8, 21–23].

Например, при снижении скорости синтеза α-цепей возникает α-талассемия. При возникновении мутаций в β-гене нарушается синтез β-полипептидной цепи, возникает β-талассемия, что приводит к образованию повышенных количеств HbF. Талассемии сопровождаются анемиями, которые могут принимать очень тяжелые формы. Увеличение количества HbF наблюдается также при гомозиготной форме β-талассемии, наследственном персистировании фетального гемоглобина, σ-, β-талассемии, серповидно-клеточной анемии [1, 24].

Увеличение пропорции HbF при рождении наблюдается у недоношенных, у новорожденных, подвергавшихся хронической внутриматочной гипоксии, а также у новорожденных, родившихся у женщих с поздними гестозами (в частности – с нефропатией), гипертонической болезнью, эндокринными нарушениями, интоксикациями, сердечно-сосудистой патологией, гематологическими заболеваниями. Уменьшенные уровни HbF обнаружены у новорожденных с синдромом Дауна [25–27]. Повышение уровня плодового гемоглобина отмечается при преждевременной отслойке плаценты, угрозе прерывания беременности [18, 21]. Значительное снижение уровня этого белка регистрируется у больных с различными типами эритробластозов [2, 16]. Показано снижение концентрации HbF в крови пациентов с лимфогранулематозом, сфероцитарной гемолитической анемией, тромбоцитопенической пурпурой [20, 28].

Литературные данные последних лет, основанные именно на иммунохимических методах определения плодового и примитивного гемоглобинов, свидетельствуют, что значение селективной индикации этих протеинов как диагностических маркеров представляет значительно больший прикладной интерес, чем считалось ранее. Показан рост продукции HbF при хронических гипоксиях различного генеза [26, 29]. Сходный компенсаторно-адаптивный рост концентрации этого белка отмечается у людей, проживающих в условиях высокогорья [25]. Значительное повышение продукции плодового гемоглобина отмечено при тяжелых формах героиновой наркомании [30].

Следует отметить, что до применения иммунохимических методов индикации сведения о прикладном значении примитивного гемоглобина как клинико-диагностического маркера были крайне скудны. На наш взгляд, это объяснялось тем, что (как считалось прежде) продукция HbP полностью ингибирована как у детей, так и у взрослых, что не вызывало интереса к данному белку как диагностическому маркеру [4, 9]. Однако, как показали исследования последних лет, основанные на внедрении иммунохимических методик, статистически значимое повышение концентраций примитивного и плодового гемоглобинов в крови регистрируется при некоторых онкологических заболеваниях красной крови (эритремия, сублейкемический миелоз, острый и хронический лимфолейкоз), что свидетельствует о высоком диагностическом значении этих протеинов как канцероэмбриональных антигенов [17, 31]. Достоверный рост уровня HbF и появление в крови HbP наблюдается при тяжелых гипоксических состояниях новорожденных, сопровождающихся задержкой внутриутробного развития или гемолитической болезнью [29, 32].

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *