Космические науки и что они изучают
Отличия наук о космосе
Зеркало Pin Up
Рады познакомить посетителей нашего сайта с официальным сайтом. Зеркало доступно по ссылке: казино пин ап
Астрономия
Самая древняя из наук, изучающих космос, и, наверное, наиболее известная из всех них. Именно астрономические приборы и инструменты первыми приходят на ум, когда говорят об исследовании Вселенной – исполинские «тарелки» радиотелескопов, белоснежные купола обсерваторий и немыслимо дорогие космические телескопы вроде «Хаббла». Всё это находится в ведении наблюдательной астрономии, чья история насчитывает не одну тысячу лет. Ещё в Древнем Китае и Древней Греции люди, глядя на звёзды, пытались понять, как устроен наш мир. Тогда же возникают и первые инструменты – секстанты и астролябии, что верой и правдой служили учёным и путешественникам на протяжении двух тысячелетий.
Древняя астрономия, зачастую перемешивающаяся с религией и предрассудками, к началу XVII века превращается в точную науку. Астрономы берут на вооружение первые оптические инструменты, телескопы, и открытия начинают сыпаться как из рога изобилия. Лавинообразный рост числа астрономических открытий не прекратился до сих пор, в основном благодаря тому, что астрономы XX века сначала перешли к изучению небесных объектов посредством не только оптического, но и радио, гамма и рентгеновского излучения, а затем начали размещать астрономические инструменты на орбите. Эти изменения по значимости сравнимы с изобретением телескопа – так много они дали для современной астрономии.
Сегодня астрономия как наука продолжает динамично развиваться – строятся новые обсерватории, конструируются телескопы и делаются потрясающие открытия. Оперирующие огромными и дорогостоящими инструментами, астрономы собирают и анализируют информацию о Вселенной, на базе которой строятся все прочие науки о космосе.
Небесная механика
Эта наука обосновывает и изучает движение небесных тел в пространстве. В отличие от астрономии, она появилась лишь в XVII веке, когда гений великого английского физика Исаака Ньютона фактически создал эту науку. Труды Ньютона, на принципиально новом уровне описывающие механические движения, оказалось возможным применить и к небесным телам. Эта теория во многом базировалась на трудах другого выдающегося учёного, Иоганна Кеплера, который смог построить первую эмпирическую модель движения планет Солнечной системы. Она оказалась удивительно точной и с небольшими поправками остаётся актуальной до сих пор. После многочисленных попыток усовершенствования казалось, что небесная механика как наука закончена, но уже в XX веке она пережила второе рождение. Это связано с двумя факторами – открытием кратных звёзд и экзопланет, а также появлением космических аппаратов.
Наличие во Вселенной сложных систем, как звёздных, так и планетарных, заставило небесную механику адаптировать для них свои модели. Для этого законы небесной механики нужно было обобщить на более интересные случаи, чем в привычной для нас Солнечной системе. Подобные задачи требовали использования усовершенствованного математического аппарата приближённых вычислений, что повлекло за собой усложнение и расширение небесной механики как науки. С другой стороны, запуск первых межпланетных космических аппаратов требовал точных расчётов траектории их движения, с учётом влияния на неё планет и других небесных объектов. Со временем эти работы были выделены в отдельную науку, названную астродинамикой.
Астрофизика
Наука, лежащая на стыке астрономии и физики (что следует из её названия) занимается изучением процессов, протекающих в звёздах. Как именно светила вырабатывают свою энергию, на какие типы делятся, что за причудливые физические процессы протекают внутри них, как они рождаются и умирают – на все эти вопросы отвечают астрофизики. Опираясь на многочисленные данные астрономических наблюдений и сложнейшие физические теории, эти специалисты пытаются строгим математическим языком описать небесные светила. Астрофизика – наука теорий и вычислений, где главный инструмент исследователя не телескоп или антенна, а суперкомпьютер или вычислительный центр.
Космология
Одна из самых молодых наук о космосе, возникшая около века назад. Долгие тысячелетия Человечество не сомневалось в статичности Вселенной – сменялись поколения, а величественная картина звёздного неба не изменялась. Лишь в начале XX века, благодаря созданию Альбертом Эйнштейном теории относительности, учёные получили инструмент для описания Вселенной. Достаточно быстро стало ясно – она отнюдь не является статичным объектом, а эволюционирует по сложным законам. Это сенсационное открытие породило целую россыпь моделей и теорий, которые совершенствовались или отвергались по мере получения новых наблюдательных данных. Так родилась космология – наука, изучающая рождение и эволюцию Вселенной как целого. Сегодня она динамично развивается, используя передовые астрономические наблюдения для уточнения существующих и создания новых моделей эволюции Вселенной. Как и астрофизика, космология лишь пользуется наблюдательными данными, а сами учёные более оперируют формулами и цифрами, нежели конкретными астрономическими инструментами.
Космонавтика
Отдельно стоит выделить космонавтику, в строгом смысле слова наукой не являющейся. Её скорее можно назвать областью человеческой деятельности, тем не менее, очень важной для познания Вселенной. Рождённая на стыке инженерии, физики и астрономии, космонавтика стала настоящим символом XX века. Казалось бы, космонавтика лишь использует астрономические знания для своих целей – запуска в космос спутников различного назначения и обитаемых кораблей. На самом деле, впечатляющая доля космических проектов нацелена не на какой-то утилитарный результат, а на изучение самого космоса.
Космические исследования можно разделить на три больших класса. Первый – это разнообразные эксперименты, проводимые космонавтами на орбитальных станциях. Не изучая космос непосредственно, они дают бесценные знания о поведении тех или иных физических, химических и биологических законов в космических условиях.
Куда значимее для астрономии, так называемые космические обсерватории. Эти аппараты представляют собой настоящие автоматизированные исследовательские станции, выведенные на орбиту. Они могут включать в себя телескопы (как оптические, так и радио или рентгеновские), многочисленные датчики и сенсоры, приборы начальной обработки данных и системы связи. Несмотря на сложность и дороговизну, создание подобных инструментов вполне оправданно – за счёт идеальных условий ближнего космоса они позволяют собирать поистине уникальную информацию о Вселенной.
Наконец, третий тип космических исследований – это запуски автоматических межпланетных станций (АМС) к объектам Солнечной системы. Именно эти аппараты собрали львиную долю информации о составе, строении и процессах, протекающих на планетах, их спутниках, кометах и астероидах. АМС позволили учёным в деталях изучить ближайшие к нам небесные тела, исследования которых с наземных или орбитальных обсерваторий было бы куда менее эффективным. К этому же классу исследований следует отнести и пока что единственную обитаемую межпланетную миссию – посещение Луны аппаратами серии «Апполон».
Лженауки
Увы, популярность в широких массах наук о космосе послужила не только росту образованности и научной грамотности населения. Разного рода мошенники, а также просто некомпетентные, но твёрдо стоящие на своём, люди всерьёз и надолго обосновались и в этой области.
Наиболее известной и древней из «околокосмических лженаук» по праву считается астрология. Рождённая тысячелетия назад как ответвление языческих культов, в современном мире астрология является всего лишь средством зарабатывания денег предприимчивыми людьми, пользующимися слепой верой людей в гороскопы. Несмотря на очевидное отсутствие мистической связи между далёкими созвездиями и судьбой конкретного человека, сотни миллионов людей по всему миру продолжают верить в «знаки звёзд». Как ни прискорбно, никакие успехи науки и технологического прогресса не могут переубедить многочисленных поклонников астрологии, а потому приходиться с этим смириться.
Другое известное порождение космического ажиотажа – уфология. Адепты этой «науки» уверены в посещении нашей планетой инопланетянами и активно ищут на Земле следы этих самых посещений. В принципе, существование во Вселенной разумной жизни не противоречит никаким научным доводам. Больше того, серьёзная наука осуществляет масштабные проекты по поиску внеземного разума, такие как проект SETI, над которым работают ведущие радиообсерватории мира. Но нужно чётко понимать разницу между научно обоснованными поисками «братьев по разуму» на планетах вокруг далёких звёзд и утверждениями «очевидцев» о посещении их зелёными человечками. Несмотря на то, что возможность контакта с представителями инопланетных цивилизаций не исключается наукой, многочисленные спекуляции и журналистские «сенсации» на этой почве не имеют к науке никакого отношения.
Космические науки и что они изучают
42. СОВРЕМЕННЫЕ НАУКИ О КОСМОСЕ
Интенсивные исследования около земного космического пространства и объектов – планет Солнечной системы с помощью автоматических и пилотируемых космических аппаратов во второй половине XX в. привели к возникновению целого ряда новых наук о космосе. Во-первых, это космическая биология, изучающая процессы прорастания семян растений, развитие растений в условиях невесомости и ограниченного пространства на борту пилотируемых космических аппаратов, а также автоматических космических станций. В последующие годы продолжались биологические исследования на пилотируемых орбитальных станциях.
Почти одновременно с космической биологией возникла и развивалась космическая медицина, которая была крайне необходимой при подготовке космонавтов на Земле, а также при полетах пилотируемых космических кораблей и станций. Космическая медицина проводила исследования в области функционирования сердечно-сосудистой системы, головного мозга, системы кроветворения, системы пищеварения у космонавтов в предпилотном режиме и затем во время полетов на орбитальных станциях.
С увеличением объемов и веса запускаемых космических аппаратов началось развитие космической астрономии. Астрономы получили возможность вести наблюдения в космосе с борта орбитальных станций, в том числе долговременных типа «Мир», а затем Международной космической станции. В результате астрономия получила много новых данных по «ближнему» и «дальнему» космосу. Астрономические наблюдения с космических аппаратов позволяют выявить на раннем этапе приближение крупных космических тел к Земле – метеоритов, астероидов, комет – и предупредить о возможном столкновении с ними, а это очень важно для обеспечения безопасности землян.
С началом космической эры, когда на Луне были проложены первые геологические маршруты, ученые-геологи получили много полезной и ценной информации. Для анализа и обобщения этой информации возникла необходимость в создании нового направления в геологической науке – космической геологии. Космические методы предоставили геологам богатейшие сведения, позволяющие в глобальном масштабе изучать строение земной поверхности, решать проблемы теоретической геологии и выявлять закономерности размещения полезных ископаемых.
Космическая геология способствует поиску минеральных богатств Земли. Она позволяет детально изучать труднодоступные районы земной поверхности.
Прогресс в развитии космической техники позволил вплотную подойти к изучению геологии отдельных планет Солнечной системы и выделить новую отрасль естествознания – сравнительную планетологию, т. е. научное направление, которое должно заниматься сравнительным анализом геологического строения планет и Земли.
Одновременно с космической геологией шло становление и развитие космической метеорологии, которая занималась исследованием атмосферы Земли, Венеры, Марса и других планет Солнечной системы и их спутников. По данным космических исследований с помощью АМС серии «Венера» установлен газовый состав венерианской атмосферы.
На основе этих исследований возникла космическая экология, которая стала изучать последствия антропогенного воздействия на «ближний» космос, т. е. околоземное пространство.
Пять важнейших космических проектов
Специалисты по исследованию планет определили приоритеты в изучении Солнечной Системы.
Людей, родившихся уже в эпоху освоения космоса, книги о Солнечной системе, вышедшие до 1957 г., зачастую приводят в состояние шока. Как мало старшее поколение знало, не имея даже представления об огромных вулканах и каньонах Марса, по сравнению с которыми гора Эверест кажется лесным муравейником, а Большой каньон похож на кювет у обочины. Возможно, ранее считали, что под облаками Венеры могут скрываться роскошные влажные джунгли, или бескрайняя сухая пустыня, или бурлящий океан, или огромные смоляные болота — все, что угодно, но только не то, что оказалось на самом деле: огромные вулканические поля — сцены Ноева потопа из застывшей магмы. Вид Сатурна ранее представлялся унылым: два расплывчатых кольца, тогда как сегодня мы можем любоваться сотнями и тысячами изящных колечек. Спутники планет-гигантов были пятнами, а не фантастическими ландшафтами с метановыми озерами и пылевыми гейзерами.
В те годы все планеты выглядели как малые островки света, а Земля казалась гораздо больше, чем сегодня. Никто и никогда не видел нашу планету со стороны: голубой мрамор на черном бархате, покрытый тонким слоем воды и воздуха. Никто не знал, что Луна была обязана своим рождением удару, или что гибель динозавров произошла единовременно. Никто до конца не понимал, как человечество может полностью изменить окружающую среду на всей планете. Кроме того, космическая эра обогатила нас знаниями о природе и открыла новые перспективы.
С момента запуска спутника в исследованиях планет несколько раз случались взлеты и падения. Например, в 1980-е гг. работы почти застопорились. Сегодня десятки зондов различных стран бороздят Солнечную систему — от Меркурия до Плутона. Но бюджет урезают, расходы растут и не всегда приводят к нужному результату, что бросает тень на NASA. В настоящее время агентство переживает далеко не лучший период своей истории с тех пор, как 35 лет назад Никсон закрыл программу «Аполлон».
«Специалисты NASA продолжают поиск приоритетных направлений, по которым будут проводиться исследования, — говорит Энтони Джанетос (Anthony Janetos) из Тихоокеанской северо-западной национальной лаборатории, член Национального исследовательского совета (NRC), курирующего программу NASA по наблюдению Земли. — Они исследуют космос? Они изучают человека или занимаются чистой наукой? Они рвутся к галактикам или ограничиваются Солнечной системой? Их интересуют шаттлы и космические станции или только природа нашей планеты?»
В принципе, такое развитие событий должно дать плоды. Должны возродиться не только программы с использованием автоматических зондов, но и пилотируемые космические полеты. Президент Джордж Буш определил в 2004 г. цель — ступить на поверхность Луны и Марса. Несмотря на всю спорность этой затеи, в NASA за нее ухватились. Но трудность состояла в том, что все это быстро превратилось в нефинансируемое поручение и заставило агентство пробивать стену, традиционно «защищающую» научные и пилотируемые программы от перерасхода средств. «Я полагаю, все знают, что у агентства недостаточно денег для проведения всех необходимых работ, — говорит Билл Клейбо (Bill Claybaugh), директор отдела исследований и анализа NASA. — На космические агентства других стран деньги тоже не льются золотым дождем».
NRC временами делает шаг назад и интересуется, как обстоят дела с планетными исследованиями в мире. Поэтому мы представляем список приоритетных целей.
1. Мониторинг климата Земли
В результате более 20 спутников Системы наблюдения Земли закончат функционировать еще до того, как им на смену придут новые аппараты. Ученые и инженеры надеются, что смогут некоторое время поддерживать их в рабочем состоянии. «Мы готовы работать, но сейчас нам нужен план, — утверждает Роберт Кахалан (Robert Cahalan), руководитель отдела климата и излучения Годдардовского центра космических полетов NASA. — Нельзя ждать, пока они сломаются».
Если спутники перестанут функционировать до того, как им придет замена, то возникнет пробел в поступлении данных, затрудняющий отслеживание изменений. Например, если аппараты следующего поколения заметят, что Солнце стало ярче, то трудно будет понять, действительно ли это так, или неверно откалиброваны приборы. Если не будут проводиться непрерывные наблюдения со спутников, данный вопрос не решить. Наблюдения поверхности Земли со спутников Landsat, проводившиеся с 1972 г., уже несколько лет как прекращены, и Министерство сельского хозяйства США вынуждено покупать данные с индийских спутников для наблюдений за урожаем.
Комиссия NRC призывает восстановить финансирование и в будущем десятилетии запустить 17 новых аппаратов, следящих за ледовым покровом и содержанием двуокиси углерода, чтобы изучить влияние таких факторов на погоду и улучшить методы ее прогноза. К сожалению, исследование климата оказывается между рутинным наблюдением за погодой (задача NOAA) и наукой (этим занимается NASA). «Основная проблема в том, что никому не поручено заниматься мониторингом климата», — считает климатолог Дрю Шиндел (Drew Shindell) из Годдардовского центра космических исследований NASA. Как и многие другие ученые, он полагает, что правительственные климатические программы, распределенные по разным ведомствам, должны быть собраны вместе и переданы одному управлению, которое будет заниматься только этой тематикой.
2. Подготовка защиты от астероидов
Астероидная угроза
Астероиды диаметром 10 км (убийцы динозавров) падают на землю в среднем раз в 100 млн лет. Астероиды диаметром около 1 км (глобальные разрушители) — раз в полмиллиона лет. Астероиды размером 50 м, способные разрушить город, — раз в тысячелетие.
«Обзор для космической защиты» выявил более 700 тел километрового размера, но все они не опасны для нас в ближайшие века. Однако этот обзор сможет обнаружить не более 75% таких астероидов.
Шанс, что среди необнаруженных 25% окажется астероид, который упадет на землю, мал. Средний риск составляет до 1 тыс. Погибших человек в год. Риск от астероидов меньшего размера — в среднем до 100 человек в год.
Астероид такой огромный, а космический зонд так мал. но дайте время, и даже слабая ракета сможет отклонить гигантскую скалу с ее опасной орбиты
Как и у всех наземных инструментов, возможности телескопа LSST ограничены. Во-первых, у него есть слепая зона: наиболее опасные объекты, движущиеся вблизи орбиты Земли немного впереди или позади нашей планеты, он может наблюдать только в лучах утренней или вечерней зари, когда солнечные лучи мешают обнаруживать их. Во-вторых, этот телескоп может определять массу астероида только косвенно — по его блеску. При этом оценка массы может различаться вдвое: большой темный астероид можно спутать с маленьким, но светлым. «А такое различие может оказаться очень важным, если нам необходима защита», — считает Клейбо.
Что делать, если астероид уже движется в направлении нашей планеты? Эмпирическое правило гласит: для отклонения астероида на величину радиуса Земли нужно за десять лет до столкновения изменить его скорость на миллиметр в секунду, толкая его ядерным взрывом или оттягивая гравитационным притяжением.
Весной 2008 г. ESA закончило предварительный проект и тут же из-за отсутствия денег положило его на полку. Для осуществления своих планов оно попробует объединить усилия с NASA и/или Японским космическим агентством (Japan Aerospace Exploration Agency, JAXA).
3. Поиск новой жизни
Но постепенно ученые вернутся к прямому поиску живых организмов или их остатков. В 2013 г. ESA планирует запустить зонд «ЭкзоМарс» (ExoMars), оснащенный такой же лабораторией, как у «Викингов», и буром, способным углубиться в грунт на 2 м — достаточно, чтобы достичь слоев, где не разрушаются органические соединения.
Многие специалисты по планетам считают приоритетным направлением изучение породы, доставленной с Марса на Землю. Анализ даже небольшого ее количества даст возможность глубоко проникнуть в историю планеты, как это сделала программа «Аполлон» в отношении Луны. Проблемы с бюджетом NASA отодвинули многомиллиардный проект к 2024 г., но Агентство уже приступило к модернизации аппарата MSL, чтобы он мог сохранить образцы коллекции.
Что касается спутника Юпитера — Европы, то ученые также хотели бы иметь орбитальный аппарат, чтобы измерить, как форма и гравитационное поле спутника откликаются на приливное влияние со стороны Юпитера. Если внутри спутника жидкость, его поверхность будет подниматься и опускаться на 30 м, а если нет — всего на 1 м. Магнитометр и радар помогут заглянуть под поверхность и, возможно, нащупать океан, а фотокамеры позволят составить карту поверхности для подготовки к посадке и бурению.
Естественным продолжением работы «Кассини» вблизи Титана были бы орбитальный и посадочный аппараты. Атмосфера Титана похожа на земную, что позволяет использовать аэростат с горячим воздухом, который время от времени сможет опускаться на поверхность и брать образцы. Целью всего этого, указывает Джонатан Лунин (Jonatan Lunine) из Аризонского университета, стал бы «анализ находящейся на поверхности органики, чтобы проверить, происходит ли продвижение в самоорганизации вещества, с которого, как думают многие специалисты, началось зарождение жизни на Земле».
В конце концов, может оказаться, что земная жизнь уникальна. Это было бы печально, но вовсе не означало бы, что все усилия затрачены впустую. По словам Брюса Якоски (Bruce Jacosky), директора Астробиологического центра Колорадского университета, астробиология позволяет понять, насколько разнообразной может быть жизнь, каковы ее предпосылки, и как она зарождалась на нашей планете 4 млрд лет назад.
4. Разгадка происхождения планет
Как и зарождение жизни, формирование планет было сложным, многоступенчатым процессом. Юпитер был первым и затем управлял другими. Как долго шло это образование? Или он зародился в едином гравитационном сжатии, как малая звезда? Сформировался ли он вдали от Солнца и затем приблизился к нему, как об этом свидетельствует аномально высокое содержание в нем тяжелых элементов? И мог ли он при этом расталкивать на своем пути небольшие планеты? Спутник Юпитера «Юнона», который NASA собирается запустить в 2011 г., должен помочь ответить на эти вопросы.
Разобраться с формированием планет помогло бы и развитие идеи зонда «Стардаст», который в 2006 г. доставил образцы пыли из комы, окружающей твердое ядро кометы. По словам руководителя проекта Дональда Браунли (Donald Brownlee) из Вашингтонского университета, «Стардаст» показал, что кометы были колоссальными сборщиками вещества протосолнечной туманности на ранней стадии формирования Солнечной системы, которое застыло во льду и сохранилось до наших дней. «Стардаст» доставил замечательные пылинки из внутренней области Солнечной системы, из внесолнечных источников и, по-видимому, даже из разрушенных объектов типа Плутона, но их очень мало». JAXA планирует получить образцы из ядер комет.
Площадкой для астроархеологических исследования может стать и Луна. Она была своеобразным Розеттским камнем для понимания истории столкновений в молодой Солнечной системе, поскольку помогла связать относительный возраст поверхности, определенный путем подсчета кратеров, с абсолютной датировкой образцов, доставленных «Аполлоном» и российской «Луной». Но в 1960-е гг. посадочные аппараты посетили лишь несколько мест. Они не добрались до кратера Эйткен — бассейна величиной с континент на обратной стороне, возраст которого может указывать время окончания формирования планет. NASA сейчас решает вопрос о посылке туда робота, чтобы он взял образцы и доставил их на Землю.
Еще одна загадка Солнечной системы заключается в том, что астероиды Главного пояса, по-видимому, возникли до появления Марса, который, в свою очередь, сформировался раньше Земли. Похоже, что волна формирования планет шла внутрь, вероятно, спровоцированная Юпитером. Но вписывается ли Венера в эту закономерность? Ведь эта планета с ее кислотными облаками, огромным давлением и адской температурой — не самое приятное место для посадки. В 2004 г. NRC рекомендовал забросить туда аэростат, который сможет на короткое время опуститься на поверхность, взять образцы, а затем набрать необходимую высоту, чтобы проанализировать их или отправить на Землю. В середине 1980-х гг. Советский Союз уже посылал на Венеру космические аппараты, а сейчас Российское космическое агентство планирует запуск нового спускаемого аппарата.
Правильный выбор?
Отношение исследователей к пилотируемым полетам в космос различается. Некоторые считают, что они несовместимы c научными задачами, а то и враждебны им. Другие думают, что полеты человека не только совместимы с наукой, но, по существу, это две стороны одной медали, имя которой — любознательность. А некоторые придерживаются той точки зрения, что людям все равно придется когда-нибудь покинуть нашу планету, хотя сейчас это делать, быть может, рановато.
Но при всем различии взглядов ученые единодушны в нескольких важных вопросах. Во-первых, хотя в космосе, на Луне и на Марсе космонавты могут проводить полезные исследования, стоимость пилотируемых экспедиций намного превышает их «научный выход». В будущем ситуация может измениться, когда исследования с помощью автоматов исчерпают свои возможности, но сейчас пилотируемые программы в первую очередь поддерживаются не научными, а иными соображениями. Глава NASA Майкл Гриффин прямо говорит, что программа Луна/Марс — не научная, несмотря на то что наука только выигрывает, участвуя в ней.
Во-вторых, космическому агентству необходимо соблюдать баланс между автоматическими и пилотируемыми полетами, т. к. цели этих двух направлений на сегодняшний день различны. В-третьих, свой вклад должны вносить как правительство, так и частные лица. После прекращения полетов шаттлов и работы Международной космической станции околоземные орбиты могут быть отданы в основном частному сектору, что поставит NASA и другие агентства в сложную ситуацию.
Для большинства ученых космическая станция, во всяком случае, в ее нынешнем виде, не представляет интереса. Им любопытен Марс, а насчет Луны все еще продолжаются горячие дебаты.
Изучение формирования планет в некоторой степени похоже на исследования происхождения жизни. Венера расположена на внутреннем краю зоны жизни, Марс — на внешнем, а Земля — посередине. Понять различие между этими планетами значит продвинуться в поисках жизни вне Солнечной системы.
5. За переделом Солнечной системы
Два года назад легендарные «Вояджеры» преодолели финансовый кризис. Когда NASA объявило, что собирается закрыть проект, протесты общественности вынудили их продолжить работу. Ничто из созданного руками человека не удалялось от нас настолько, как «Вояджер-1»: на 103 астрономических единицы (а.е.), т. е. в 103 раза дальше, чем Земля от Солнца, и каждый год к этому добавляется по 3,6 а.е. В 2002 или 2004 г. (по разным оценкам) он достиг загадочной многослойной границы Солнечной системы, где частицы солнечного ветра сталкиваются с потоком межзвездного газа.
Деньги нужны даже в космосе
Деньги нашлись вследствие сокращения программ шаттлов и космической станции. Президент Дж. Буш отказался от своего обещания добавить несколько миллиардов и ускорил 20% сокращение бюджета научных программ. Многие проекты были урезаны или отменены.
Глава NASA Майкл Гриффин считает, что бюджет Агентства с учетом инфляции позволит совершить посадку на Марс в конце 2030-х гг.
Но «Вояджеры» были созданы для изучения внешних планет, а не межзвездного пространства. Их плутониевые источники энергии иссякают. Уже давно в NASA думают создать специальный зонд, и доклад NRC по солнечной физике от 2004 г. советует агентству начать работу в данном направлении.
Внешние границы
Межзвездный зонд должен исследовать приграничную область Солнечной системы, где газ, выброшенный Солнцем, встречается с межзвездным газом. Он должен иметь скорость, долговечность и оснащение, которых нет у «Вояджеров» и «Пионеров»
Зонд должен измерить содержание аминокислот в межзвездных частицах, чтобы определить, сколько сложного органического вещества попало в Солнечную систему извне. Ему также необходимо найти частицы антивещества, которые могли родиться в миниатюрных черных дырах или темном веществе. Он должен определить, как граница Солнечной системы отражает вещество, включая космические лучи, способные влиять на земной климат. Еще ему надо выяснить, присутствует ли в окружающем нас межзвездном пространстве магнитное поле, которое может играть важную роль в формировании звезд. Этот зонд можно использовать как миниатюрный космический телескоп для проведения космологических наблюдений, свободных от влияния межпланетной пыли. Он помог бы изучить так называемую аномалию «Пионеров» — необъяснимую силу, действующую на два далеких космических зонда «Пионер-10» и «Пионер-11», а также проверить общую теорию относительности Эйнштейна, указав, где гравитация Солнца собирает лучи света далеких источников в фокус. С его помощью можно было бы детально изучить одну из ближайших звезд, например эпсилон Эридана, хотя чтобы добраться туда, потребуются десятки тысяч лет.
Чтобы достичь небесного тела на расстоянии сотен астрономических единиц за время жизни ученого (и плутониевого источника энергии), нужно разогнаться до скорости 15 а.е. в год. Для этого можно использовать один из трех вариантов — тяжелый, средний или легкий, соответственно, с ионным двигателем, питающимся от ядерного реактора, либо солнечный парус.
Тяжелый (36 т) и средний (1 т) зонды были разработаны в 2005 г. командами под руководством Томаса Цурбухена (Tomas Zurbuchen) из Мичиганского университета в Анн-Арборе и Ральфа Макнатта (Ralph McNutt) из Лаборатории прикладной физики Университета Джонса Хопкинса. Но более приемлемым для запуска выглядит самый легкий вариант. ESA рассматривает сейчас предложение международной команды ученых под руководством Роберта Виммер-Швайнгрубера (Robert Wimmer-Schweingruber) из университета в Киле, Германия. К этому проекту может присоединиться и NASA.
Солнечный парус диаметром 200 м сможет разогнать пятисоткилограммовый зонд. После запуска с Земли он должен устремиться к Солнцу и пройти как можно ближе к нему (внутри орбиты Меркурия), чтобы поймать мощный напор солнечного света. Как спортсмен-виндсерфингист, космический корабль будет двигаться галсами. Перед орбитой Юпитера он должен сбросить парус и полететь свободно. Но прежде инженеры должны разработать достаточно легкий парус и испытать его в упрощенном варианте.