Контроллер зарядки что это
Контроллер батареи в смартфоне — что это и как работает?
Как работает контроллер питания в современных телефонах?
В современных литий-ионных аккумуляторах установлен контроллер заряда — устройство, которое следит за текущим напряжением. Оно нужно, чтобы из-за поступления большого напряжения смартфон не вышел из строя или не сгорела батарея.
Процесс зарядки смартфона состоит из нескольких этапов.
Контроллер питания снижает напряжение, чтобы снизить нагрузку на аккумулятор телефона. Когда достигается низкое значения напряжения (обычно 1,5-2 Вольт), контроллер отключает MOSFET-транзистор, который отвечает за подачу тока в гаджет. Устройство переходит в режим сна, потребление энергии снижается. Благодаря этому смартфон не перегревается, даже если оставить его заряжаться на всю ночь.
Если подключить некачественное зарядное устройство к гаджету, контроллер начнет проверку. Его задача — установить предельные значения для основных параметров ЗУ: напряжение, ток заряда, входной ток. Для контроллера важно, чтобы зарядное устройство не повредило батарею. Благодаря этому снижается износ аккумулятора.
Еще одно назначение контроллера — отключение мобильного устройства. Когда аккумулятор разряжается практически полностью, смартфон отключается. Это снижает процесс износа батареи, благодаря чему увеличивается срок эксплуатации гаджета.
Солнечная батарея на балконе: тестирование контроллера заряда
В предыдущей части была рассмотрена и проверена работа платы BMS, обеспечивающей корректный заряд литий-ионного аккумулятора. Китайская почта наконец доставила Solar charge controller, так что пора протестировать и его.
Результаты тестирования под катом.
Контроллер заряда (Solar charge controller)
Данное устройство является основным во всей системе — именно контроллер обеспечивает взаимодействие всех компонентов — солнечной панели, нагрузки и батареи (он нужен, только если мы хотим именно накапливать энергию в батарее, если отдавать энергию сразу в электросеть, нужен другой тип контроллера grid tie).
Контроллеров на небольшие токи (10-20А) на рынке довольно-таки много, но т.к. в нашем случае используется литиевая батарея вместо свинцовой, то нужно выбирать контроллер с настраиваемыми (adjustable) параметрами. Был куплен контроллер, как на фото, цена вопроса от 13$ на eBay до 20-30$ в зависимости от жадности местных продавцов. Контроллер гордо называется «Intelligent PWM Solar Panel Charge Controller», хотя по сути вся его «интеллектуальность» заключается в возможности задания порогов заряда и разряда, и конструктивно он не сильно отличается от обычного DC-DC конвертора.
Подключение контроллера весьма просто, у него всего 3 разъема — для солнечной панели, нагрузки и аккумулятора соответственно. В качестве нагрузки в моем случае была подключена светодиодная лента на 12В, аккумулятор все тот же тестовый с Hobbyking. Также на контроллере есть 2 USB-разъема, от которых можно заряжать различные устройства.
Все вместе выглядело так:
Перед тем как использовать контроллер, его надо настроить. Контроллеры этой модели продаются в разных модификациях для разных типов батарей, отличия скорее всего лишь в предустановленных параметрах. Для моей литиевой батареи c тремя ячейками (3S1P) я установил следующие значения:
Как можно видеть, напряжение отключения заряда (PV OFF) установлено на 12.5В (исходя из 4.2В на ячейку можно было поставить 12.6, но небольшой недозаряд положительно сказывается на количестве циклов батареи). Следующие 2 параметра — отключение нагрузки, в моем случае настроено на 10В, и повторное включение заряда на 10.5В. Минимальное значение можно было поставить и меньше, до 9.6В, небольшой запас был оставлен для работы самого контроллера, который питается от той же батареи.
Тестирование
С разрядом проблем ожидаемо не было. Заряда батареи хватило чтобы зарядить планшет, также горела светодиодная лента, и при пороговом напряжении в 10В, лента погасла — контроллер отключил нагрузку, чтобы не разряжать батарею ниже заданного порога.
А вот с зарядом все пошло не совсем так. Вначале все было хорошо, и максимальная мощность по ваттметру составила около 50Вт, что вполне неплохо. Но ближе к концу заряда подключенная в качестве нагрузки лента стала сильно мерцать. Причина ясна и без осциллографа — две BMS не очень дружат между собой. Как только напряжение на одной из ячеек достигает порога, BMS отключает батарею, из-за чего отключается и нагрузка и контроллер, затем процесс повторяется. Да и учитывая что пороговые напряжения уже заданы в контроллере, вторая плата защиты по сути и не нужна.
Пришлось вернуться к плану «Б» — поставить на батарею только плату балансировки, оставив контроллеру управление зарядом. Плата 3S balance board выглядит так:
Бонус этого балансира еще и в том, что он в 2 раза дешевле.
Конструкция получилась даже проще и красивее — балансир занял свое «законное» место на балансировочном разъеме батареи, к контроллеру батарея подключена через силовой разъем.
Все вместе выглядит примерно так:
Больше никаких неожиданностей не было. Когда напряжение на батарее поднялось до 12.5В, потребляемая от панелей мощность упала практически до нуля а напряжение увеличилось до максимума «холостого хода» (22В), т.е. заряд больше не идет.
Напряжение на 3х ячейках батареи в конце заряда составило 4.16В, 4.16В и 4.16В, что дает в сумме 12.48В, к контролю заряда, как и к балансиру претензий нет.
Заключение
Система работает, почти как и ожидалось. Днем электроэнергия может накапливаться, вечером ее можно использовать. В финальной версии батарея будет заменена на блок из элементов 18650, которые уже описывались в предыдущей части. Емкость батареи можно увеличить до 20Ач, больше для балконной системы уже избыточно. Если же приобрести другой балансир, можно использовать и LiFePo4-аккумуляторы, достаточно установить нужные пороги напряжений в контроллере. Однако в моем случае, смысла в этом скорее всего нет — стоимость LiFePo4 на 10-20Ач составляет 80-100$, что уже сопоставимо со стоимостью Grid Tie контроллера, который я собираюсь протестировать в дальнейшем.
Еще исключительно для тестов (понятно что экономического смысла в этом нет) была заказана батарея ионисторов на 12В, благо цены падают и сейчас они относительно дешевые. Будет интересно проверить, на сколько хватит их заряда. Stay tuned.
Примечание: показанная на фото батарея от Hobbyking была поставлена исключительно для теста. Эти батареи не тестировались для постоянного использования в подобных системах, также их не рекомендуется оставлять без присмотра.
Более-менее окончательная версия батареи выглядит вот так:
Это 12 ячеек 18650, соединенных в группы параллельно по 4. Примерная емкость батареи около 12ач, этого хватает для зарядки разных гаджетов и для вечернего освещения комнаты светодиодной лентой. В батарее используются элементы Panasonic, те же что и в автомобилях Tesla S, надежность данных ячеек можно считать вполне хорошей.
Для желающих посмотреть видео-версию, ролик выложен в youtube.
Что такое контроллер заряда аккумуляторов и для чего он нужен
Что из себя представляет контроллер заряда АКБ и для чего он используется
Что такое контроллер заряда аккумуляторов и для чего он нужен
Зачем нужен контроллер заряда?
Контроллер заряда это устройство которое автоматически регулирует уровень тока и напряжения от источника (например солнечных батарей) для обеспечения заряда аккумуляторных батарей, таким образом предохраняя аккумуляторы от повреждений.
Можно ли обойтись без контроллера заряда?
Имея некоторый опыт работы с электроприборами, умея пользоваться вольтметром и амперметром, внимательно изучив инструкцию аккумулятора на предмет зарядных и разрядных характеристик безусловно можно обойтись без контроллера заряда.
При таком способе заряда АКБ велика вероятность снижения номинальной емкости (в связи с систематическим недозарядом) или выхода из строя из-за высокого тока или напряжения. Именно поэтому используются различные контроллеры заряда.
Какие бывают контроллеры заряда?
В основном разделяют три типа контроллеров заряда – on/off контроллер, PWM ( ШИМ) контроллер и MPPT (ТММ) контроллеры. В чем же их особенности и чем они отличаются:
on/off контроллер заряда
данное устройство выполняет функцию отключения аккумуляторов от источника при достижении определенного напряжения. Такой тип контроллеров на сегодняшний день практически не используется. Это простейшая альтернатива ручному контролю заряда аккумуляторов о котором мы говорили ранее.
PWM ( ШИМ) контроллер
Этот прибор является уже более продвинутым вариантом для заряда аккумуляторов, поскольку в автоматическом режиме контролирует уровень тока и напряжения, а также следит за наступлением максимума напряжения. После того как максимум напряжения достигнут, ШИМ контроллер удерживает его некоторое время для стабилизации аккумулятора и достижения его максимальной емкости. Как правило такие контроллеры стоят недорого и могут удовлетворить простым солнечным системам.
О том как подобрать такой контроллер вы можете прочитать тут –
MPPT (ТММ) контроллеры
Какой контроллер заряда выбрать?
Выбирая контроллер для солнечной системы прежде всего нужно понять масштаб самой системы. Если вы собираете небольшую солнечную системудля обеспечения наиболее необходимых бытовых приборов электричеством (от 0.3 кВт до 2кВт) то вполне можно обойтись правильно подобранным ШИМ контроллером. Если же речь идет об автономной системе, резервной системе или, возможно, о системе совместимой с сетевым электричеством, то в данном случае не обойтись без хорошего MPPT контроллера.
Вы также можете позвонить нам по телефону 8-800-100-82-43 или +7-499-7097509 и мы будем рады помочь вам подобрать контроллер в соответствии с вашей потребностью!
Принцип работы контроллера аккумулятора в телефоне и гаджетах
Столкнувшись с неполадками в зарядке мобильного гаджета, следует разобраться в особенностях этого процесса и в том, как именно работает контроллер батареи на основе литий-ионной технологии. Мы должны понимать источник возникшей проблемы, чтобы исправить её.
В этой статье предлагаем вкратце рассмотреть принцип работы контроллера батареи и узнать его назначение.
Что такое контроллер батареи?
Контроллер заряда аккумулятора — простыми словами, это печатная плата внутри элемента питания (иногда крепится прямо на его корпусе). Правильное её название «BMS-плата» ( Battery Management System ), то есть плата системы управления аккумулятором.
Прежде всего, контроллер нужен для сохранения дорогостоящего аккумулятора от критических отклонений напряжения от номинальных 3,7 Вольт путём отключения.
На BMS-плате распаяны электронные компоненты для защиты устройства от неисправностей по электроцепи питания. Без неё работать литий-ионные аккумуляторы теоретически могут, но это приведёт к их скорейшему выходу из строя с высокой вероятностью взрыва.
Из чего состоит контроллер батареи?
Электросхема очень простая и не требует глубоких познаний в схемотехнике. Хотя производители дорогостоящих смартфонов и пытаются усовершенствовать её, но принцип конструкции остаётся одинаковым для всех.
На печатной плате контроллера батареи в большинстве случаев размещаются:
В ряде случаев контроллер распаян на три контакта вместо двух — тогда помимо традиционных «плюса» и «минуса» производитель применяет так называемый «информационный контакт».
Принцип работы контроллера батареи в гаджетах
Каких-то редких узлов контроля цепи питания на аккумуляторах в телефонах, планшетах и ноутбуках вы не встретите, поэтому можно условиться, что все они выполняют примерно одинаковые задачи в мобильных устройствах.
1. Контролирует процесс заряда устройства.
При зарядке с 0% включает режим предварительной зарядки до примерно 10%. Затем увеличивает скорость заполнения ёмкости аккумулятора и постоянным током заряжает до 70-85%. Далее снижает напряжение для завершающего этапа в режиме дозарядки — процесс замедляется для меньшей нагрузки на элемент питания.
Бывает, что контроллер неправильно определяет пограничные значения процента заряда и требует «калибровки».
2. Не даёт аккумулятору перезарядиться.
Есть установленное максимальное значение напряжения для Li-Ion — 4,15-4,2 В. При достижении такой высокой цифры питание отключается (иначе батарея вздуется или даже взорвётся).
3. Защищает батарею от глубокого разряда
Есть также пороговое минимальное значение напряжения для Li-Ion — 2,9-3 В. Более низкие значения приводят к потере ёмкости и другим неприятным последствиям.
4. Ограничивает ток
Принципиальная функция для защиты по току электросиловой цепи («просадки» напряжения на 150 мВ и более), без которой срок службы аккумулятора уменьшится, а также от короткого замыкания.
5. Оптимизация батареи
Её ещё называют «балансировка аккумулятора» — система из последовательно установленных электронных компонентов. Нужна для устранения разброса значений по электросхеме, что увеличивает срок службы слабых звеньев элемента питания, а значит и его самого.
6. Отслеживание температуры
Присутствует не во всех аккумуляторных контроллерах для удешевления, но практически всегда такая функция необходима для защиты от перегрева или переохлаждения. Операционная система также получает эту информацию для отслеживания состояния батареи.
Все значения однократно вносятся в контроллер ещё на производстве. Подстройка через ОС или «перешивка» значений встречается крайне редко. Также производители нередко удешевляют конструкцию контроллера для аккумуляторов телефона и урезают принцип работы в том или ином виде.
Посмотрите видео
Рекомендуем увидеть ликбез с YouTube-канала Energy DIY, в котором подробно и наглядно показано то, о чём мы здесь рассказали вкратце.
***
Теперь вы знаете, что такое контроллер батареи в мобильном устройстве и сможете разобраться, является ли причиной неполадки одна из его функций. Например, это может быть перегрев, либо неисправный адаптер питания со слишком высоким значением напряжения.
Хотите добавить что-то важное о контроллерах? Оставьте информацию или вопрос в комментарии. Ждём ваши сообщения и ВКонтакте @NeovoltRu.
Подпишитесь в группе на новости из мира гаджетов, узнайте об улучшении их автономности и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.
Контроллер заряда АКБ — что это и для чего он нужен?
Контроллер заряда аккумулятора — это плата, которая защищает элемент питания от скачков напряжения, перезарядки или “глубокой разрядки”. Расскажем об особенностях таких устройств, их видах и способах подключения.
Что такое контроллер заряда аккумулятора
Контроллер заряда работает по разным принципам, что завит от типа батареи, к которой он подключен. В мобильных телефонах, смартфонах, планшетах, ноутбуках используют BMS-плату (микросхему) с распаянными электронными элементами на литий-ионном аккумуляторе. Если исключить плату защиты из цепи, то АКБ быстрее выйдет из строя или взорвется из-за нарушений правил эксплуатации.
В ветрогенераторах используют электронные блоки. Внешние контроллеры подключают к солнечным батареям. Последние выбирают исходя от типа аккумуляторов для накопления электрической энергии. Последние, зачастую представлены в свинцово-кислотном исполнении.
Функции
Контролеры созданы для:
Все параметры задают микросхеме или контролеру на этапе производства.
Виды контроллеров
Принцип зарядки батареи зависит от установленного оборудования. Нижеперечисленные контроллеры используют для солнечных батарей, аналогичные устройства применяют и в других сферах восполняемого электричества.
Приборы On/Off
Устройство начального сегмента, которое отключает подачу питания после достижения аккумулятором максимального напряжения. Это защищает батарею от перегрева, перезарядки.
Срабатывает “защита”, когда восстановлено 70-85% емкости — пик напряжения. Далее, ток должен уменьшиться и зарядить АКБ до 100% за 1-3 часа, но этого не происходит из-за особенностей прибора. Как итог, постоянная недозарядка уменьшает срок эксплуатации и емкость аккумулятора.
Контроллер носит второе название ШИМ и работает по принципу широтно-импульсной модуляции тока. По аналогии с печатной платой в смартфонах, где установлены литейно-ионные источники питания, устройство понижает входящее напряжение по достижению его пика и доводит зарядку до 100%.
Стоит устройство выше предыдущего варианта, но позволяет сохранить “резервуары для энергии”.
В прибор заложены алгоритмы для замеров тока и напряжения системы энергоснабжения и определения оптимального соотношения параметров для стабильной работы подключенной станции.
Согласно статистике, MPPT на 35% продуктивнее распределяют энергию, полученную с внешнего источника питания, нежели PWM-варианты. Учитывая стоимость девайса, его принято использовать для автоматизации “солнечных ферм”. Из-за сниженной стоимости, в частных домах практичнее использовать ШИМ.
Гибридные устройства
Такие контроллеры совмещают особенности PWM и MPPT. Их используют для распределения энергии, полученной с ветрогенераторов, которые совмещают с солнечными панелями. Главным отличием от обычных моделей являются вольтамперные параметры.
Способы подключения
Подключение завит от типа устройства.
Специально для пользователей, рядом с клеммами есть обозначения, что к ним подключать. Необходимо учесть строгую последовательность:
1. Подключите аккумулятор.
2. Включите предохранитель на плате, рядом с «+».
3. Вставьте контакты солнечных батарей.
4. Подсоедините контрольную лампу с напряжением 12 или 24 В.
Подключение заметно отличается от ШИМ:
Последовательность и тип подключения будет незначительно отличаться:
Советы специалистов
Выбор контроллера зависит от сценария использования, напряжения батарей и химического состава АКБ. При ограниченном бюджете делают ставку на PWM. Для поддержания солнечной фермы используют MPPT.
Контроллером заряда аккумулятора снабжают любые источника питания, защищая их от перегрева, перезаряда, недозаряда и потери емкости. Приборы бывают интегрированными или внешними. Последние используют при получении энергии от солнечных панелей или ветряных установок, дополнительно задействуя инвертор.