Коэффициент теплопроводности снега чему равен

снег. теплопроводность снега. простейшее укрытие из снега.

Снег – это атмосферные осадки, состоящие из мелких кристаллов льда. Существует устойчивое мнение, что снег является хорошим теплоизолятором и в связи с этим может обладать едва ли не волшебными свойствами на маршруте. Особенно хороши эти теоретические изыскания дома в тепле. Давайте рассмотрим более внимательно аспекты использования снега на маршруте.

Как правило, снег выпадает на поверхность земли в форме снежинок примерно 5 мм в диаметре и массой 0,004 гр. При этом снежинки на 95 процентов состоят из воздуха и как раз именно это обеспечивает показатель теплоизоляции в 0,1-0,15 вт\м*гр, при плотности 100-200 кг\м3. Показатель теплоизоляции достаточно высок и сравним с хорошими строительными утеплителями. Судя по этому, можно просто выйти на улицу, упасть в сугроб и спокойно спать – будет тепло. Тем не менее, если бы всё было так, то бомжей на улицах нашей страны было бы больше, чем любой другом государстве мира.

Выйдем на улицу и пройдёмся по снегу. Да, он хрустит. За счёт чего? За счёт того, что кристаллики льда ломаются и снег уплотняется. Как частный случай, при температуре от минус двух и теплее снег не скрипит, так как кристаллы льда не ломаются, а тают. Конечного результата это не меняет – снег становится более плотным и его показатели теплоизоляции падают. Кроме этого, снег не имеет свойства лежать на поверхности именно в том состоянии, в котором упал. Он постоянно меняется, с течением времени, изменения температуры, влияния ветров, из-за переноса и дрейфа по склонам. В горах снег постепенно может превратиться в фирн, а затем в лёд. Существует большое количество состояний снега, но наилучшими теплоизоляционными свойствами обладает только свежевыпавший. Увы, обладает он этими свойствами только до тех пор, пока его не сжать. В целом, в процессе изменения свойств снега его плотность может значительно увеличиться, а теплоизоляция ухудшиться почти на порядок.

Почему тогда рекомендуются снежные норы при аварийных зимних ночёвках? Можно ли переночевать в сугробе в одежде, просто закопавшись в снег? Почему северные народы строят хижины из снега? Если, казалось бы, всё так плохо с теплоизоляцией у снега?

По поводу ночлега в сугробе всё просто – всё зависит от одежды. В принципе, каждый из трёх вышеозначенных вопросов завязан на второй закон термодинамики, как и почти всё, связанное с теплом. Человек, полностью зарывшийся в снег, составляет со снегом систему, которая должна уравновеситься в отношении температуры.

Так как температура человека выше, чем у снега, то тепло должно интенсивно уходить от него в толщу снега. Одежда как раз должна эти потери предотвращать. Хорошим моментом является уже само то, что температура снега выше, чем воздуха и выше, чем грунта. Это уменьшает потери тепла. Плохим моментом мы получаем то, что снег может таять и, во-первых, превращаясь в лёд, значительно терять в теплоизоляции, а во-вторых, проникая в мокром виде в нашу одежду, может снижать её теплоизоляцию.

Отсюда вывод – одежда должна быть такой толщины и обладать такими свойствами, чтобы тепло, выделяемое человеком, почти полностью сохранялось в пакете одежды, при этом температура поверхностного слоя этого пакета должна всегда быть равной температуре снега, в который мы улеглись.

Вот два условия, при которых ночёвка в слое снега будет безопасной. Многие животные за счёт этого и переживают зиму – шкура позволяет и жир под ней. Естественно, для всего этого нужно быть здоровым и сытым, потому что потери тепла в принципе неизбежны, и оно должно генерироваться организмом.

Также соответствующим пакетом одежды должно обеспечиваться всё тело полностью, включая все лапы. Другими словами, если в хорошем тельнике, бушлате на меху, толстых ватных штанах, валенках на тёплые носки, меховых рукавицах и шапке на меху залезть в снег, то можно там вполне удобно устроиться. Или подобрать для этого более современную одежду – что не так уж и просто, впрочем. Тем не менее, ночёвка в правильной одежде в толще снежного покрова практикуется до сих пор в некоторых войсках специального назначения.

О строительстве снежных нор и особенностях ночёвок в них я уже писал. Зачастую для норы приходиться искать специальное место, например, надув, где её можно вырыть, или же самому нагребать кучу снега и ждать некоторое время, пока она смёрзнется.

В отличие от просто ночёвки в сугробе, задачей норы может ставиться как раз изоляция поверхности одежды от снега. То есть, одежда слишком неподходящая, для того, чтобы просто завалиться в снег. Кроме того, в горах при непогоде другого варианта может не быть. Да, теплоизоляция снега в таких случаях невысока, но она есть в принципе.

В норе нет потерь от конвекции, если нора правильно сделана, конечно. Это особенно важно, когда снаружи ветер. Если мы роем снежную нору и у нас недостаточно плотный пакет одежды, чтобы предотвратить потери тепла через тепловое излучение, то немаловажным в успехе дальнейшего бытия будет играть коврик или импровизированная подстилка. Если её не будет, то замерзание в таком случае станет неизбежным. Если она есть, то воздух между вашим телом и стенами норы, благодаря тепловому излучению от вашего тела, немного прогреется. Чем теплее и безветреннее будет снаружи, чем толще стены у вашей норы, тем выше будет температура внутри. Ненамного, конечно, но выше. Бывает, перепада температур достаточно для выживания. Что такое перепад температуры в десять градусов? Это очень много для аварийной ночёвки, но при минус сорока градусах снаружи это может уже не помочь. Плюс к этому, одежда может отсыреть и если к следующей ночи она не высохнет, выжить станет сложнее.

Отсюда вывод – при неизбежной ночёвке в толще снега, чем хуже одежда, тем более чаша выбора между убежищами должна склоняться в сторону норы, при прочих равных условиях, конечно.

Теперь о снежных хижинах эскимосов – иглу. Почему свои дома они строят из снега? Ответ очевиден и прост донельзя – а больше строить не из чего. Больше там ничего нет. Это, во-первых. Во-вторых, хижины отапливаются жировками – горелками на жире. Тут всё просто – можно построить самый технологичный и тёплый дом на свете, потом прийти в него среди суровой зимы и обнаружить, что там холодно. Логично – тёплый дом, спальный мешок, одежда и прочее, они должны удерживать уже существующее тепло, а сами по себе они греть не могут, так как для этого нужен источник энергии. Также и иглу эскимосов – они теплы, пока в них топят. Также, как туристическая палатка с печкой – на улице может быть минус тридцать, а внутри плюс тридцать. Разница только в том, что палатка теплоизоляции вообще никакой не имеет и стоит только прекратить топить печку, как температура в течение короткого промежутка времени сравняется с уличной. У иглу теплоизоляция какая-никакая, а присутствует. По сравнению с палаткой, она просто отличная. Грамотная конструкция, плюс в долговременных посёлках шкурами укрываются и стены жилища, существенно повышая степень удерживания тепла.

В походах с палаткой снег может являться защитой от ветра. Палатку вкапывают, юбку засыпают снегом, строят ветрозащитные стены из блоков. В долговременных лагерях выше уровня леса и при наличии толстого снежного покрова, кухни и отхожие места часто делаются в виде пещер, а переходы между палатками и пещерами выполняются траншеями.

Вывод: снег хороший теплоизолятор в том случае, если ничего другого нет, и при том условии, если с умом подходить к его использованию. Тем не менее, его свойства не спасут человека, который уже замёрз, устал, голоден или просто его снаряжение и одежда не позволяют достичь цели выживания при помощи только лишь укрытий из снега.

Резюме:
1. Любое снежное укрытие защищает от ветра. Иногда это важно, иногда- нет.
2. Любое снежное укрытие не даст температуры внутри существенно выше 0 градусов. Но при грамотном исполнении (минимум вентиляции) и достаточном количестве снега (толщине стенок) почти всегда позволяет к 0 приблизиться. Просто нужно понимать, что при сильных морозах на прогрев снега прилегающего к одежде или снега внутренних стен может потребоваться изрядное время, ибо массовая теплоёмкость снега (Дж/градус*кг)довольно велика- в 5 раз больше, чем у железа. (Сравните с банькой из толстенных брёвен- на поддержание тепла нужно мало энергии, но на первоначальный прогрев- много.) Однако, при наличии дополнительного источника тепла (свеча, газовая горелка, котелок с углями) прогреть воздух можно довольно быстро. Т.е. температура воздуха может опережать температуру стен.
3. Зарываться в снег можно только при изрядном минусе и достаточно тёплой одежде, чтоб снег не начал таять на её поверхности.
4. Норы и иглу.
Плюсы:
а. нет контакта одежды и снега- и при нуле, и при плюсе, и в лёгкой одежде она (одежда) может сохраниться сухой.
б. есть возможность использовать дополнительный источник тепла.
Минусы:
а. имеют большую поверхность, большую массу стен и обычно более интенсивную вентиляцию- т.е. больше энергии нужно на первоначальный прогрев до нуля и на поддержание этой температуры.
б. требуют больше времени на возведение, нежели закапывание.

КАТЕГОРИЧЕСКИ НЕ РЕКОМЕНДУЮ ЭКСПЕРИМЕНТИРОВАТЬ С ЭТИМ УКРЫТИЕМ В ОДИНОЧКУ ТЕМ, КТО РАНЬШЕ ЭТОГО НЕ ДЕЛАЛ И ВСЕМ, КТО НЕ ИМЕЕТ ДОСТАТОЧНОГО (НЕ МЕНЕЕ ДВУХ СЕЗОНОВ) ОПЫТА ЗИМНИХ НОЧЕВОК – В ЛУЧШЕМ СЛУЧАЕ ЧРЕВАТО ЗНАЧИТЕЛЬНЫМ УЩЕРБОМ ДЛЯ ЗДОРОВЬЯ, В ХУДШЕМ – ЛЕТАЛЬНЫМ ИСХОДОМ.

Это укрытие эффективно по нескольким показателям:

Наличие свойств, указанных в п. 1, п. 3 и п. 4 делает это укрытие самым уникальным из известных снежных укрытий, включая иглу, так как для строительства иглу нужен минимальный набор инструментария и немалый практический опыт.

Эти укрытия можно подразделить так: «снежанка-единичка», снежанка-двушка», снежанка-трешка» и так далее, но под «единичкой», «двушкой» «трешкой» и так далее, следует понимать не количество человеко-мест, а количество валов снега, из которых это убежище построено.

Строится «снежанка-единичка» следующим образом:

ВАЖНО: снег нужно двигать валом от границ условного «большого» круга к центру, где будет снежанка. При этом нужно определить сколько валов снега вам понадобится согнать к центру с учетом высоты снежного покрова таким образом, чтобы вал снега был не слишком тяжелым для его перемещения к центру. Особенно это актуально, если отсутствуют какие-либо инструменты и работать приходится ногами, руками и элементами одежды.

3. для того, чтобы в снежанке можно было свободно сидеть, исходная высота снежной кучи должна быть до плеча (от основания)

5. ВАЖНО: по ходу сооружения кучи снега для снежанки, трамбовать ее ничем не нужно – снег и так слежится (смерзнется) достаточно плотно для того, чтобы вы могли построить правильное укрытие: дело в том, что строительство снежанки займет у вас не менее часа, и когда вы бросите последнюю порцию снега на «макушку», основание, в котором вы начнете копать вход уже будет достаточно прочным, потому что оно простояло уже минимум полчаса, а пока вы выберете внутренний объем до верхних слоев, пройдет еще полчаса, не меньше – этого времени даже при небольших минусах достаточно для того, чтобы кристаллы снега смерзлись между собой до безопасной кондиции. А при слишком активной трамбовке снег может оказаться настолько плотным, что его трудно будет ковырять, что приведет к дополнительным энергозатратам.
Чтобы внутренний объем был комфортнее, снежную кучу для будущей снежанки нужно делать с двумя вершинами, а седловину между ними можно засыпать в последнюю очередь снегом, который будет взят при обтесывании понизу (до колена) стенок кучи для увеличения их крутизны.

Если снежанка построена с целью переждать пургу (бурю, метель) и есть опасность того, что вход и вентиляционные отверстия будут заметены, в потолке следует пробить отверстие, в которое нужно вставить лыжную палку, вращая которую можно будет расширять заметаемое отверстие. Конец лыжной палки с темляком будет служить ориентиром в поиске вашего местонахождения. Если есть такая возможность, еще лучше – использовать шест длинной 2-3 метра с привязанной к нему любой тряпкой (желательно темной или цветной) в качестве сигнального элемента, что значительно облегчит поиск вашего местонахождения и процесс самооткапывания при сильном заносе снегом.

10. на время отдыха вход желательно законопатить, насколько это возможно, плотно. Вход несложно закрыть, сделав заслонку из сухой травы или веток вперемешку со снегом. При наличии такой заслонки нижнее вентиляционное отверстие необязательно, так как через травяную заслонку в снежанку будет происходить небольшой приток воздуха.

Строительство снежанки-двушки от снежанки-единички, как уже было сказано выше, отличается только количеством снежных валов, сгоняемых к центру для накопления необходимого количества снега, позволяющего построить укрытие нужного объема.

ВНИМАНИЕ, очень важно: нужно быть предельно внимательным и осторожным во время строительства снежанки при плюсовых температурах, особенно, если эти плюсовые температуры уже продержались некоторое время: это может привести к обрушению снега во внутренний объем во время строительства, даже если снег уплотнялся (трамбовался) в процессе нагребания кучи. Также, при плюсовых, даже самых незначительных температурах, не рекомендуется пытаться ускорить процесс и сэкономить время, нагребая снег к выворотню поваленного дерева, стене оврага, каменной стенке, отдельно стоящему дереву и т. д. – все это может также привести к обрушению снега во внутренний объем.

Источник

научная статья по теме ВЛИЯНИЕ СТРАТИГРАФИИ СНЕЖНОГО ПОКРОВА НА ЕГО ТЕРМИЧЕСКОЕ СОПРОТИВЛЕНИЕ Геофизика

Коэффициент теплопроводности снега чему равен. Смотреть фото Коэффициент теплопроводности снега чему равен. Смотреть картинку Коэффициент теплопроводности снега чему равен. Картинка про Коэффициент теплопроводности снега чему равен. Фото Коэффициент теплопроводности снега чему равен

Цена:

Авторы работы:

Научный журнал:

Год выхода:

Текст научной статьи на тему «ВЛИЯНИЕ СТРАТИГРАФИИ СНЕЖНОГО ПОКРОВА НА ЕГО ТЕРМИЧЕСКОЕ СОПРОТИВЛЕНИЕ»

Лёд и Снег • 2013 • № 3 (123)

Влияние стратиграфии снежного покрова на его термическое сопротивление

© 2013 г. Н.И. Осокин, А.В. Сосновский, Р.А. Чернов

Институт географии РАН, Москва osokinn@mail.ru

Статья принята к печати 13 мая 2012 г.

Глубинная изморозь, коэффициент теплопроводности, плотность, термическое сопротивление снега.

Coefficient of heat conductivity, density, depth hoar, thermal resistance of snow.

Термическое сопротивление снежного покрова оказывает на промерзание грунта влияние, сравнимое с влиянием средней температуры холодного периода. Выполнен анализ известных значений коэффициента эффективной теплопроводности снега и проведено их сравнение с экспериментальными данными, полученными для снега разной структуры в Московском регионе. На примере Западного Шпицбергена и Подмосковья оценено влияние ледяных корок и слоёв глубинной изморози на термическое сопротивление снежного покрова. Показано, что игнорирование стратиграфии снежного покрова при расчёте термического сопротивления может увеличить значение последнего более чем в полтора раза. В результате расчётная скорость промерзания грунта в холодный период возрастает, тогда как реальное промерзание будет меньше и можно пропустить момент опасного снижения прочности грунта и начало деградации многолетней мерзлоты.

Снежный покров — важное звено взаимодействия в системе атмосфера—литосфера, которое значительно влияет на термическое состояние почвогрунтов. Теплозащитные свойства снежного покрова определяются его термическим сопротивлением Rs = hs/’k5, где hs — толщина снежного покрова, — коэффициент эффективной теплопроводности снега. Известно, что в некоторых районах криолитозоны рост температуры воздуха не изменяет термическое состояние почвогрунтов, что обусловлено снижением толщины снежного покрова [8]. Расчёты показали, что изменение средней температуры холодного периода приблизительно так же влияет на промерзание грунта, как и изменение термического сопротивления снежного покрова [5]. Это видно из оценки теплового потока q, проходящего через снежную толщу, величина которого пропорциональна температуре воздуха и обратно пропорциональна термическому сопротивлению снежного покрова:

где Т — температура снега, °С; Т0 — температура поверхности снежного покрова, °С; Та — температура воздуха, °С; Т^ — температура поверхности грунта под снежным покровом, °С; х — координата по глубине снежной толщи, м.

Это соотношение получено при следующих условиях: 1) квазистационарном распределении температуры в снежной толще; 2) приблизительном равенстве То

Та; 3) небольших значениях температуры поверхности грунта под снежным покровом по сравнению с температурой воздуха, т.е. |Т^0| по теме «Геофизика»

НАКАЛОВ П.Р., ОСОКИН Н.И., СОСНОВСКИЙ А.В. — 2015 г.

НАКАЛОВ П.Р., НЕНАШЕВ С.В., ОСОКИН Н.И., СОСНОВСКИЙ А.В. — 2013 г.

Источник

Теплопроводность материалов таблица, СНиП

В современном мире важным аспектом частного дома является его энергоэффективность. То есть способность тратить минимальное количество энергии на поддержание комфортного климата в доме. Чтобы тратить меньше энергии, необходимо позаботится о сокращении ее потерь.

Теплопроводность материалов — это способность материала сохранять тепло в холодное время и удерживать прохладу летом.

Теплоёмкость — количество теплоты, поглощаемой (выделяемой) телом в процессе нагревания (остывания) на 1 кельвин.

Плотность — отношение массы тела к занимаемому этим телом объёму.

Теплопроводность строительных материалов

Проектированием по технологиям энергоэффективных домов должны заниматься специалисты, но в реальной жизни все может быть иначе. Случается так, что владельцы домов по ряду причин вынуждены самостоятельно подбирать материалы для строительства. Им также потребуется рассчитать теплотехнические параметры, на основании которых будут проводиться термоизоляция и утепление. Поэтому нужно иметь хотя бы минимальные представления о строительной теплотехнике и ее основных понятиях, таких как коэффициент теплопроводности, в каких единицах измеряется и как просчитывается. Знание этих «азов» поможет правильно утеплить свой дом и экономно его отапливать.

Что такое теплопроводность

Если говорить простыми словами, то теплопроводность – это передача тепла от более горячего тела к менее горячему. Если не углубляться в подробности, то все физические материалы и вещества могут передавать тепловую энергию.

Ежедневно, даже на самом примитивном бытовом уровне мы сталкиваемся с теплопроводностью, которая проявляется у каждого материала по-разному и в очень отличающейся степени. Для примера, если мешать кипящую воду металлической ложкой – можно очень скоро получить ожег, так как ложка нагреется почти моментально. Если же использовать деревянную лопатку, то нагреваться она будет очень медленно. Этот пример наглядно показывает разницу теплопроводности у металла и дерева – у металла она в разы выше.

Коэффициент теплопроводности

Для оценки теплопроводности любого материала используется коэффициент теплопроводности (λ), который измеряется в Вт/(м×℃) или Вт/(м×К). Этот коэффициент обозначает количество тепла, которое может провести любой материал, не зависимо от своего размера, за единицу времени на определённое расстояние. Если мы видим, что какой-то материал имеет большое значение коэффициента, то он очень хорошо проводит тепло и его можно использовать в роли обогревателей, радиаторов, конвекторов. К примеру, металлические радиаторы отопления в помещениях работают очень эффективно, отлично передавая нагрев от теплоносителя внутренним воздушным массам в помещении.

Если же говорить о материалах, используемых при строительстве стен, перегородок, крыши, то высокая теплопроводность – явление нежелательное. При высоком коэффициенте здание теряет слишком много тепла, для сохранения которого внутри помещения нужно будет сооружать довольно толстые конструкции. А это влечет за собой дополнительные финансовые затраты.

Коэффициент теплопроводности зависит от температуры. По этой причине в справочной литературе указывается несколько значений коэффициента, которые изменяются при увеличении температур. На проводимость тепла влияют и условия эксплуатации. В первую очередь речь идет о влажности, так как при увеличении процента влаги коэффициент теплопроводности также возрастает. Поэтому проводя такого рода расчеты нужно знать реальные климатические условия, в которых здание будет построено.

Сопротивление теплопередаче

Коэффициент теплопроводности – важная характеристика любого материала. Но эта величина не совсем точно описывает теплопроводные способности конструкции, так как не учитывает особенности ее строения. Поэтому более целесообразно просчитывать сопротивление теплопередачи, которое по своей сути является обратной величиной коэффициента теплопроводности. Но в отличие от последнего при расчете учитывается толщина материала и другие важные особенности конструкции.

При строительстве, как правило, используются многослойные конструкции, таких как каркасные или СИП дома Одним из таких слоев является утеплительный материал, который максимально повышает значение термического сопротивления. Каждый слой такой конструкции имеет свое сопротивление и его нужно рассчитывать исходя из коэффициента теплопроводности и толщины материала. Суммировав сопротивления всех слоев, мы получим общее сопротивление всей конструкции.

Важно отметить, что воздушные прослойки, которые находятся в конструкции перегородки и не сообщаются с внешним воздухом, значительно увеличивают общее сопротивление теплопередаче.

Современные тенденции строительства предусматривают использования в качестве утеплителя синтетических материалов таких как ЭППС PIR плиты и Изолон, которые обладают отличными характеристиками, удобны и просты в монтаже.

Коэффициенты теплопроводности плотности и теплоемкости рассчитаны почти для всех строительных материалов. Ниже приведена таблица с информацией о коэффициентах для всех материалов, которые могут использоваться при строительстве зданий. Даже просто взглянув на эти данные, становится понятно, насколько разная проводимость тепла у строительных материалов и насколько сильно могут отличаться значения коэффициентов. Для упрощения выбора материала покупателем, производители указывают значение коэффициента теплопроводности в паспорте на свой товар.

МатериалПлотность, кг/м3Теплопроводность, Вт/(м·град)Теплоемкость, Дж/(кг·град)
ABS (АБС пластик)1030…10600.13…0.221300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках1000…18000.29…0.7840
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—721100…12000.21
Альфоль20…400.118…0.135
Алюминий (ГОСТ 22233-83)2600221840
Асбест волокнистый4700.161050
Асбестоцемент1500…19001.761500
Асбестоцементный лист16000.41500
Асбозурит400…6500.14…0.19
Асбослюда450…6200.13…0.15
Асботекстолит Г ( ГОСТ 5-78)1500…17001670
Асботермит5000.116…0.14
Асбошифер с высоким содержанием асбеста18000.17…0.35
Асбошифер с 10-50% асбеста18000.64…0.52
Асбоцемент войлочный1440.078
Асфальт1100…21100.71700…2100
Асфальтобетон (ГОСТ 9128-84)21001.051680
Асфальт в полах0.8
Ацеталь (полиацеталь, полиформальдегид) POM14000.22
Аэрогель (Aspen aerogels)110…2000.014…0.021700
Базальт2600…30003.5850
Бакелит12500.23
Бальза110…1400.043…0.052
Береза510…7700.151250
Бетон легкий с природной пемзой500…12000.15…0.44
Бетон на гравии или щебне из природного камня24001.51840
Бетон на вулканическом шлаке800…16000.2…0.52840
Бетон на доменных гранулированных шлаках1200…18000.35…0.58840
Бетон на зольном гравии1000…14000.24…0.47840
Бетон на каменном щебне2200…25000.9…1.5
Бетон на котельном шлаке14000.56880
Бетон на песке1800…25000.7710
Бетон на топливных шлаках1000…18000.3…0.7840
Бетон силикатный плотный18000.81880
Бетон сплошной1.75
Бетон термоизоляционный5000.18
Битумоперлит300…4000.09…0.121130
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74)1000…14000.17…0.271680
Блок газобетонный400…8000.15…0.3
Блок керамический поризованный0.2
Бронза7500…930022…105400
Бумага700…11500.141090…1500
Бут1800…20000.73…0.98
Вата минеральная легкая500.045920
Вата минеральная тяжелая100…1500.055920
Вата стеклянная155…2000.03800
Вата хлопковая30…1000.042…0.049
Вата хлопчатобумажная50…800.0421700
Вата шлаковая2000.05750
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67100…2000.064…0.076840
Вермикулит вспученный (ГОСТ 12865-67) — засыпка100…2000.064…0.074840
Вермикулитобетон300…8000.08…0.21840
Войлок шерстяной150…3300.045…0.0521700
Газо- и пенобетон, газо- и пеносиликат(пеноблок)300…10000.08…0.21840
Газо- и пенозолобетон800…12000.17…0.29840
Гетинакс13500.231400
Гипс формованный сухой1100…18000.431050
Гипсокартон500…9000.12…0.2950
Гипсоперлитовый раствор0.14
Гипсошлак1000…13000.26…0.36
Глина1600…29000.7…0.9750
Глина огнеупорная18001.04800
Глиногипс800…18000.25…0.65
Глинозем3100…39002.33700…840
Гнейс (облицовка)28003.5880
Гравий (наполнитель)18500.4…0.93850
Гравий керамзитовый (ГОСТ 9759-83) — засыпка200…8000.1…0.18840
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка400…8000.11…0.16840
Гранит (облицовка)2600…30003.5880
Грунт 10% воды1.75
Грунт 20% воды17002.1
Грунт песчаный1.16900
Грунт сухой15000.4850
Грунт утрамбованный1.05
Гудрон950…10300.3
Доломит плотный сухой28001.7
Дуб вдоль волокон (дерево)7000.232300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83)7000.12300
Дюралюминий2700…2800120…170920
Железо787070…80450
Железобетон25001.7840
Железобетон набивной24001.55840
Зола древесная7800.15750
Золото19320318129
Известняк (облицовка)1400…20000.5…0.93850…920
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80)300…4000.067…0.111680
Изделия вулканитовые350…4000.12
Изделия диатомитовые500…6000.17…0.2
Изделия ньювелитовые160…3700.11
Изделия пенобетонные400…5000.19…0.22
Изделия перлитофосфогелевые200…3000.064…0.076
Изделия совелитовые230…4500.12…0.14
Иней0.47
Ипорка (вспененная смола)150.038
Каменноугольная пыль7300.12
Камни многопустотные из легкого бетона500…12000.29…0.6
Камни полнотелые из легкого бетона DIN 18152500…20000.32…0.99
Камни полнотелые из природного туфа или вспученной глины500…20000.29…0.99
Камень строительный22001.4920
Карболит черный11000.231900
Картон асбестовый изолирующий720…9000.11…0.21
Картон гофрированный7000.06…0.071150
Картон облицовочный10000.182300
Картон парафинированный0.075
Картон плотный600…9000.1…0.231200
Картон пробковый1450.042
Картон строительный многослойный (ГОСТ 4408-75)6500.132390
Картон термоизоляционный (ГОСТ 20376-74)5000.04…0.06
Каучук вспененный820.033
Каучук вулканизированный твердый серый0.23
Каучук вулканизированный мягкий серый9200.184
Каучук натуральный9100.181400
Каучук твердый0.16
Каучук фторированный1800.055…0.06
Кедр красный500…5700.095
Кембрик лакированный0.16
Керамзит800…10000.16…0.2750
Керамзитовый горох900…15000.17…0.32750
Керамзитобетон на кварцевом песке с поризацией800…12000.23…0.41840
Керамзитобетон легкий500…12000.18…0.46
Керамзитобетон на керамзитовом песке и керамзитопенобетон500…18000.14…0.66840
Керамзитобетон на перлитовом песке800…10000.22…0.28840
Керамика1700…23001.5
Керамика теплая0.12
Кирпич доменный (огнеупорный)1000…20000.5…0.8
Кирпич диатомовый5000.8
Кирпич изоляционный0.14
Кирпич карборундовый1000…130011…18700
Кирпич красный плотный1700…21000.67840…880
Кирпич красный пористый15000.44
Кирпич клинкерный1800…20000.8…1.6
Кирпич кремнеземный0.15
Кирпич облицовочный18000.93880
Кирпич пустотелый0.44
Кирпич силикатный1000…22000.5…1.3750…840
Кирпич силикатный с тех. пустотами0.7
Кирпич силикатный щелевой0.4
Кирпич сплошной0.67
Кирпич строительный800…15000.23…0.3800
Кирпич трепельный700…13000.27710
Кирпич шлаковый1100…14000.58
Кладка бутовая из камней средней плотности20001.35880
Кладка газосиликатная630…8200.26…0.34880
Кладка из газосиликатных теплоизоляционных плит5400.24880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе16000.47880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе18000.56880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе17000.52880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе1000…14000.35…0.47880
Кладка из малоразмерного кирпича17300.8880
Кладка из пустотелых стеновых блоков1220…14600.5…0.65880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе15000.64880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе14000.52880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе18000.7880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе1000…12000.29…0.35880
Кладка из ячеистого кирпича13000.5880
Кладка из шлакового кирпича на цементно-песчаном растворе15000.52880
Кладка «Поротон»8000.31900
Клен (дерево)620…7500.19
Кожа800…10000.14…0.16
Композиты технические0.3…2
Краска масляная (эмаль)1030…20450.18…0.4650…2000
Кремний2000…2330148714
Кремнийорганический полимер КМ-911600.21150
Накипь котельная (богатая известью, при 100°С)1000…25000.15…2.3
Накипь котельная (богатая силикатом, при 100°С)300…12000.08…0.23
Настил палубный6300.211100
Найлон0.53
Нейлон13000.17…0.241600
Неопрен0.211700
Опилки древесные200…4000.07…0.093
Пакля1500.052300
Панели стеновые из гипса DIN 1863600…9000.29…0.41
Парафин870…9200.27
Паркет дубовый18000.421100
Паркет штучный11500.23880
Паркет щитовой7000.17880
Пемза400…7000.11…0.16
Пемзобетон800…16000.19…0.52840
Пенобетон300…12500.12…0.35840
Пеногипс300…6000.1…0.15
Пенозолобетон800…12000.17…0.29
Пенопласт ПС-11000.037
Пенопласт ПС-4700.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78)65…1250.031…0.0521260
Пенопласт резопен ФРП-165…1100.041…0.043
Пенополистирол (ГОСТ 15588-70)400.0381340
Пенополистирол (ТУ 6-05-11-78-78)100…1500.041…0.051340
Пенополистирол «Пеноплекс»35…430.028…0.031600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75)40…800.029…0.0411470
Пенополиуретановые листы1500.035…0.04
Пенополиэтилен0.035…0.05
Пенополиуретановые панели (PIR) ПИР0.025
Пеносиликальцит400…12000.122…0.32
Пеностекло легкое100..2000.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73)200…4000.07…0.11840
Пенофол44…740.037…0.039
Пергамент0.071
Пергамин (ГОСТ 2697-83)6000.171680
Перекрытие армокерамическое с бетонным заполнением без штукатурки1100…13000.7850
Перекрытие из железобетонных элементов со штукатуркой15501.2860
Перекрытие монолитное плоское железобетонное24001.55840
Перлит2000.05
Перлит вспученный1000.06
Перлитобетон600…12000.12…0.29840
Перлитопласт-бетон (ТУ 480-1-145-74)100…2000.035…0.0411050
Перлитофосфогелевые изделия (ГОСТ 21500-76)200…3000.064…0.0761050
Песок 0% влажности15000.33800
Песок 10% влажности0.97
Песок 20% влажности1.33
Песок для строительных работ (ГОСТ 8736-77)16000.35840
Песок речной мелкий15000.3…0.35700…840
Песок речной мелкий (влажный)16501.132090
Песчаник обожженный1900…27001.5
Пихта450…5500.1…0.262700
Плита бумажная прессованая6000.07
Плита пробковая80…5000.043…0.0551850
Плитка облицовочная, кафельная20001.05
Плитка термоизоляционная ПМТБ-20.04
Плиты алебастровые0.47750
Плиты из гипса ГОСТ 64281000…12000.23…0.35840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77)200…10000.06…0.152300
Плиты из керзмзито-бетона400…6000.23
Плиты из полистирол-бетона ГОСТ Р 51263-99200…3000.082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75)40…1000.038…0.0471680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78)500.056840
Плиты из ячеистого бетона ГОСТ 5742-76350…4000.093…0.104
Плиты камышитовые200…3000.06…0.072300
Плиты кремнезистые0.07
Плиты льнокостричные изоляционные2500.0542300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80150…2000.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-962250.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия)170…2300.042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-952000.052840
Плиты минераловатные повышенной жесткости на органофосфатном связующем2000.064840
(ТУ 21-РСФСР-3-72-76)
Плиты минераловатные полужесткие на крахмальном связующем125…2000.056…0.07840
Плиты минераловатные на синтетическом и битумном связующих0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом50…3500.048…0.091840
и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66)
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-8780…1000.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые30…350.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00320.029
Плиты перлито-битумные ГОСТ 16136-803000.087
Плиты перлито-волокнистые1500.05
Плиты перлито-фосфогелевые ГОСТ 21500-762500.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-741500.044
Плиты перлитоцементные0.08
Плиты строительный из пористого бетона500…8000.22…0.29
Плиты термобитумные теплоизоляционные200…3000.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74)200…3000.052…0.0642300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе300…8000.07…0.162300
Покрытие ковровое6300.21100
Покрытие синтетическое (ПВХ)15000.23
Пол гипсовый бесшовный7500.22800
Поливинилхлорид (ПВХ)1400…16000.15…0.2
Поликарбонат (дифлон)12000.161100
Полипропилен (ГОСТ 26996 – 86)900…9100.16…0.221930
Полистирол УПП1, ППС10250.09…0.14900
Полистиролбетон (ГОСТ 51263)200…6000.065…0.1451060
Полистиролбетон модифицированный на200…5000.057…0.1131060
активированном пластифицированном шлакопортландцементе
Полистиролбетон модифицированный на200…5000.052…0.1051060
композиционном малоклинкерном вяжущем в стеновых блоках и плитах
Полистиролбетон модифицированный монолитный на портландцементе250…3000.075…0.0851060
Полистиролбетон модифицированный на200…5000.062…0.1211060
шлакопортландцементе в стеновых блоках и плитах
Полиуретан12000.32
Полихлорвинил1290…16500.151130…1200
Полиэтилен высокой плотности9550.35…0.481900…2300
Полиэтилен низкой плотности9200.25…0.341700
Поролон340.04
Портландцемент (раствор)0.47
Прессшпан0.26…0.22
Пробка гранулированная450.0381800
Пробка минеральная на битумной основе270…3500.28
Пробка техническая500.0371800
Ракушечник1000…18000.27…0.63
Раствор гипсовый затирочный12000.5900
Раствор гипсоперлитовый6000.14840
Раствор гипсоперлитовый поризованный400…5000.09…0.12840
Раствор известковый16500.85920
Раствор известково-песчаный1400…16000.78840
Раствор легкий LM21, LM36700…10000.21…0.36
Раствор сложный (песок, известь, цемент)17000.52840
Раствор цементный, цементная стяжка20001.4
Раствор цементно-песчаный1800…20000.6…1.2840
Раствор цементно-перлитовый800…10000.16…0.21840
Раствор цементно-шлаковый1200…14000.35…0.41840
Резина мягкая0.13…0.161380
Резина твердая обыкновенная900…12000.16…0.231350…1400
Резина пористая160…5800.05…0.172050
Рубероид (ГОСТ 10923-82)6000.171680
Руда железная2.9
Сажа ламповая1700.07…0.12
Сера ромбическая20850.28762
Серебро10500429235
Сланец глинистый вспученный4000.16
Сланец2600…33000.7…4.8
Слюда вспученная1000.07
Слюда поперек слоев2600…32000.46…0.58880
Слюда вдоль слоев2700…32003.4880
Смола эпоксидная1260…13900.13…0.21100
Снег свежевыпавший120…2000.1…0.152090
Снег лежалый при 0°С400…5600.52100
Сосна и ель вдоль волокон (дерево)5000.182300
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72)5000.092300
Сосна смолистая 15% влажности (дерево)600…7500.15…0.232700
Сталь стержневая арматурная (ГОСТ 10884-81)785058482
Стекло оконное (ГОСТ 111-78)25000.76840
Стекловата155…2000.03800
Стекловолокно1700…20000.04840
Стеклопластик18000.23800
Стеклотекстолит1600…19000.3…0.37
Стружка деревянная прессованая8000.12…0.151080
Стяжка ангидритовая21001.2
Стяжка из литого асфальта23000.9
Текстолит1300…14000.23…0.341470…1510
Термозит300…5000.085…0.13
Тефлон21200.26
Ткань льняная0.088
Толь (ГОСТ 10999-76)6000.171680
Тополь (дерево)350…5000.17
Торфоплиты275…3500.1…0.122100
Туф (облицовка)1000…20000.21…0.76750…880
Туфобетон1200…18000.29…0.64840
Уголь древесный кусковой (при 80°С)1900.074
Уголь каменный газовый14203.6
Уголь каменный обыкновенный1200…13500.24…0.27
Фарфор2300…25000.25…1.6750…950
Фанера клееная (ГОСТ 3916-69)6000.12…0.182300…2500
Фибра красная12900.46
Фибролит (серый)11000.221670
Целлофан0.1
Целлулоид14000.21
Цементные плиты1.92
Черепица бетонная21001.1
Черепица глиняная19000.85
Черепица из ПВХ асбеста20000.85
Чугун
Шевелин140…1900.056…0.07
Шелк1000.038…0.05
Шлак гранулированный5000.15750
Шлак доменный гранулированный600…8000.13…0.17
Шлак котельный10000.29700…750
Шлакобетон1120…15000.6…0.7800
Шлакопемзобетон (термозитобетон)1000…18000.23…0.52840
Шлакопемзопено- и шлакопемзогазобетон800…16000.17…0.47840
Штукатурка гипсовая8000.3840
Штукатурка известковая16000.7950
Штукатурка из синтетической смолы11000.7
Штукатурка известковая с каменной пылью17000.87920
Штукатурка из полистирольного раствора3000.11200
Штукатурка перлитовая350…8000.13…0.91130
Штукатурка сухая0.21
Штукатурка утепляющая5000.2
Штукатурка фасадная с полимерными добавками18001880
Штукатурка цементная0.9
Штукатурка цементно-песчаная18001.2
Шунгизитобетон1000…14000.27…0.49840
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка200…6000.064…0.11840
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75)400…8000.12…0.18840
и аглопорита (ГОСТ 11991-83) — засыпка
Эбонит12000.16…0.171430
Эбонит вспученный6400.032
Эковата35…600.032…0.0412300
Энсонит (прессованный картон)400…5000.1…0.11
Эмаль (кремнийорганическая)0.16…0.27

Таблица теплопроводности теплоемкости и плотности материалов

Необходимость расчетов

Для чего же необходимо проводить эти вычисления, есть ли от них хоть какая-то польза на практике? Разберемся подробнее.

Оценка эффективности термоизоляции

В разных климатических регионах России разный температурный режим, поэтому для каждого из них рассчитаны свои нормативные показатели сопротивления теплопередаче. Проводятся эти расчеты для всех элементов строения, контактирующих с внешней средой. Если сопротивление конструкции находится в пределах нормы, то за утепление можно не беспокоиться.

В случае, если термоизоляция конструкции не предусмотрена, то нужно сделать правильный выбор утеплительного материала с подходящими теплотехническими характеристиками.

Тепловые потери

Не менее важная задача – прогнозирование тепловых потерь, без которого невозможно правильно спланировать систему отопления и создать идеальную термоизоляцию. Такие вычисления могут понадобиться при выборе оптимальной модели котла, количества необходимых радиаторов и правильной их расстановки.

Для определения тепловых потерь через любую конструкцию нужно знать сопротивление, которое вычисляется с помощью разницы температур и количества теряемого тепла, уходящего с одного квадратного метра ограждающей конструкции. И так, если мы знаем площадь конструкции и ее термическое сопротивление, а также знаем для каких климатических условий производится расчет, то можем точно определить тепловые потери. Есть хороший калькулятор расчета теплопотерь дома ( он может даже посчитать сколько будет уходить денег на отопление, примерно конечно).

Такие расчеты в здании проводятся для всех ограждающих конструкций, взаимодействующих с холодными потоками воздуха, а затем суммируются для определения общей потери тепла. На основании полученной величины проектируется система отопления, которая должна полностью компенсировать эти потери. Если же потери тепла получаются слишком большими, они влекут за собой дополнительные финансовые затраты, а это не всем «по карману». При таком раскладе нужно задуматься об улучшении системы термоизоляции.

Отдельно нужно поговорить про окна, для них сопротивление теплопередаче определяются нормативными документами. Самостоятельно проводить расчеты не нужно. Существуют уже готовые таблицы, в которых внесены значения сопротивления для всех типов конструкций окон и балконных дверей.
Тепловые потери окон рассчитываются исходя из площади, а также разницы температур по разные стороны конструкции.

Расчеты, приведенные выше, подходят для новичков, которые делают первые шаги в проектировании энергоэффективных домов. Если же за дело берется профессионал, то его расчеты более сложные, так как дополнительно учитывается множество поправочных коэффициентов – на инсоляцию, светопоглощение, отражение солнечного света, неоднородность конструкций расположение дома на участке и другие.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *