графеновые аккумуляторы что это такое
Что такое графеновый аккумулятор, и чем он хорош?
Мы уже не раз во многих статьях затрагивали тему графеновых аккумуляторов. Каждый год мы пишем о них, но производители никак не начнут выпускать смартфоны с подобными аккумуляторами. Дело в том, что пока производство такого аккумулятора слишком дорогое, однако уже в ближайшие несколько лет всё может сильно измениться. Аккумуляторы являются одним из самых важных моментов, влияющих на развитие рынка смартфонов, да и в целом мобильных гаджетов. Чем современнее аккумулятор и чем больше емкости при меньшем размере он предлагает, тем большую мощность производители могут использовать в телефонах. Таким образом производители мобильных процессоров смогут устанавливать более производительные чипсеты, не беспокоясь по поводу автономности.
Что такое графеновый аккумулятор?
В данном материале мы рассмотрим графеновые аккумуляторы и попытаемся понять, чем они так хороши. А начнем мы с того, что уже сейчас очевидно, что графеновые аккумуляторы станут заменой текущим литий-ионным батареям. Еще одной интересной технологией поделились ребята из Стэнфордского университета.
Что такое графеновый аккумулятор?
Это композиция атомов карбона, тесно связанных в сотовой структуре. А размер двумерной структуры равен толщине всего одного атома. Подобная 2D-структура имеет хорошую электрическую и термальную проводимость, она очень гибкая, соединения атомов достаточно прочные, да и вес у них небольшой. Основная проблема заключается в том, как удешевить производство настолько тонких слоев.
В графеновых аккумуляторах, как и в литий-ионных, имеется две токопроводящие пластины, покрытые пористым материалом и погруженные в раствор электролита. Однако технология хоть и кажется похожей, но имеет лучшие характеристики. Графеновые аккумуляторы лучше проводят электричество. Это позволяет заряжать их заметно быстрее. А лучшая теплопроводность будет меньше нагревать такие аккумуляторы, что увеличит их срок службы. Кроме того, графеновые аккумуляторы легче и тоньше при идентичной емкости.
Литий-ионные аккумуляторы способны вмещать в себя 180 ватт-час, тогда как графеновые аккумуляторы предлагают 1000 ватт-час. Простыми словами, мощность графеновых аккумуляторов значительно выше.
Производители не сразу станут использовать полностью графеновые батареи. Скорее всего, сначала на рынке будут представлены гибридные решения: когда в литий-ионных аккумуляторах будут использовать графен для улучшения показателей катодного проводника.
Смартфоны с графеновым аккумулятором
Наличие в устройстве графенового аккумулятора будет означать на 60% большую емкость при идентичных размерах, меньший нагрев при зарядке, такие аккумуляторы не будут терять в емкости даже спустя 2 года использования, зарядка будет происходить равномерно, а не так, как сейчас, когда нужно ждать целый час, чтобы телефон зарядился с 80% до 100%. Сама зарядка будет происходить заметно быстрее.
Таким образом, графеновые аккумуляторы могут стать настоящей революцией на рынке смартфонов и электрических автомобилей. Компаниям сегодня выгодно инвестировать средства на удешевление производства таких решений, потому что они смогут существенно улучшить производительность телефонов и их срок службы, а также увеличить время работы электромобилей от одного заряда аккумулятора.
Интересно узнать и ваше мнение. Как вам графеновые аккумуляторы? Не забывайте также про на чат Телеграм.
Графеновый аккумулятор — современные технологии
Даже те, кто мало разбирается в технике, знают, что любой автономной системе, работа которой связана с электричеством, требуются независимые источники электроэнергии. Это мобильные устройства, транспортные средства, оборудованные аккумуляторами и батареями.
«Батарейки», широко используемые сейчас, ограничены в объеме и имеют непродолжительный срок службы. Графеновый аккумулятор этих недостатков лишен. В статье пойдет речь о том, что собой представляют такие батареи, как они устроены, какие у них достоинства и недостатки и где их можно найти.
О материале графен
Известно две формы углерода – графит и алмаз. Первый используется в качестве стержней карандашей, алмаз – наиболее прочный материал на всей планете. В 2004 году российские ученые «получили» ранее неизвестную, третью форму – графен.
Сам графен – это вещество пленкообразной структуры, «собранное» из атомов углерода (как гласит википедия). В природных условиях эту двумерную пленку не встретишь. Изготавливается она человеком, для чего требуются повышенное давление и температура.
По факту, это вещество является плоскостью графита, отделенной от общей структуры материала. Атомы углерода графена «объединяются» и получается шестигранная кристаллическая решетка.
Электроны в веществе сохраняют свою подвижность, поэтому открытый в 2004 году материал годится для «внедрения» в полупроводниковые схемы, батареи и нанотехнологии. Особенность графеновых аккумуляторов – они мало весят, при этом имеют рекордную емкость.
Графеновые аккумуляторы
«Инновационный углерод» нашел применение, в первую очередь, в автомобилестроении. Точнее – в производстве электромобилей. Повышенная активность заряженных частиц позволяет увеличить полезную емкость графеновых батарей.
На начальных этапах разработки этих источников питания, в листы графена добавляли литий. Но вещество «бурно» реагировало на воду и другие окислители, поэтому для промышленных задач эта схема оказалась малопригодной.
Литий, контактирующий с водой на открытой местности, приводит к масштабному взрыву. Поэтому такие модификации не устанавливались в автомобили, ведь, если транспортное средство повредится, а вместе с ним и аккумулятор – это может стать причиной возгорания.
Сам процесс производства требовал большого количества лития – вещества, которого на планете не так уж и много.
Принцип действия аккумулятора аналогичен тому, как работают классические батареи в автомобилях с ДВС. Различаются только электрохимические процессы, проходящие в «теле» устройства. Они практически аналогичны реакциям литий-полимерных батарей.
Есть две технологии производства графеновых источников питания:
У графена высокая электропроницаемость, а еще он склонен к накоплению электрозаряда. Поэтому в обоих случаях скорость движения ионов между электродами повышается, а вместе с этим и емкость батарей.
Преимущества и недостатки
Если сравнивать с традиционными технологиями, то у графеновых источников питания следующие достоинства:
Но и это не самая «страшная» проблема. Дело в том, что до сих пор батареи из графена не производят крупномасштабными партиями.
Устройство
Графеновые АКБ работают за счет той же электрохимической реакции, что присуща распространенным свинцовым батареям, в которых кислотный или щелочной электролит.
Устройство более всего схоже с литий-ионными источниками питания, в которых задействуется твердый электролит.
Единственное, катодом выступает угольный кокс, так как его химический состав наиболее близок к чистому углероду, а графитовый слой заменен графеновым.
Для повышения «вместимости» батареи, ученые начали устанавливать между слоями графена кластеры из кремния. А для повышения скорости зарядки в пластинах графена начали делать небольшие отверстия, 15 – 20 нм (нанометров).
Особенности магний-графенового аккумулятора
Первые магниевые батареи были разработаны испанскими учеными в 2017 году. Графеновые аккумуляторы, в которых электролитом выступает магний, более емкие и быстрее заряжаются.
Нередко это изобретение относят к батареям нового поколения. При этом, они на 77% дешевле и на 50% легче литий-ионных аналогов.
Высокая подвижность ионов позволяет зарядить такой аккумулятор за 8 минут. А максимальной емкости достаточно, чтобы электромобиль смог проехать 1000 км.
Принцип действия любых аккумуляторов – химические процессы окисления и восстановления. Магний, который стоит практически в 20 раз дешевле лития, выбран неслучайно.
Магний, как литий, не взрывоопасен при контакте с жидкостью, также его легче утилизировать. Да и запасов его на планете куда больше.
По мнению ученых, новые магний-графеновые батареи будут иметь емкость в 2,5 раза больше, чем у традиционных литиевых источников питания.
Немецкие автомобильные концерты приняли такую батарею на тестирование. Тест оказался успешным и пошли разговоры об использовании аккумуляторов в промышленности.
Электромобиль, работающий без использования ископаемых источников топлива, не будет таким же быстрым, как транспортное средство на бензине или «дизеле». Но снижается цена питания и обслуживания. А это уже значимый шаг, который еще более отображает перспективность машин на электричестве.
По их мнению, подобные источники питания станут еще безопаснее, более стойкими к возникновению коротких замыканий.
Где купить аккумулятор
Аккумуляторы, сделанные из графена, пока что остаются только в виде проектов. Если они будут реализованы, то получатся батареи, которые смогут в течение года работать без подзарядки. Пока что заряд приходится постоянно пополнять и все знают, сколько примерно заряжаются литий-ионные «пластины».
Углеродные источники питания – технология, которая найдет отклик в будущем, когда будут отлажены все технические тонкости производства. Тогда, может быть, появятся и первые смартфоны с графеновыми аккумуляторами, которые будут заряжаться за несколько минут.
Когда наступит революция в аккумуляторах?
Разбираемся, где давно обещанные революционные графеновые батареи и почему мы до сих пор пользуемся аккумуляторами на основе лития.
С выходом каждого нового поколения iPhone мы видим, как улучшаются процессоры, память, дисплеи, камеры и почти все остальные компоненты. Почему мы не видим каких-то значительных улучшений в аккумуляторах? По сравнению с тем, как стремительно развиваются все остальные компоненты смартфона, кажется, что батареи стоят на месте.
Давайте для начала определимся, что не так с существующими литий-ионными батареями, и выясним, в чём их основные недостатки.
Недостатки литий-ионных батарей
Недолговечность
Думаю, каждый из вас замечал, что спустя год использования смартфона батарея теряет ёмкость на 10–15 %. 800–1000 циклов — это предел для большинства аккумуляторов в смартфонах, за этим пределом использование гаджета уже становится непрактичным.
Чувствительность к температуре
Большинство литиевых аккумуляторов плохо переносит перепады температур. Работа при слишком низких или слишком высоких температурах ведёт к деградации аккумулятора. Вспомните, как раньше iPhone вырубался на сильном холоде. На морозе химические компоненты теряют свои свойства и не могут производить достаточного напряжения — в итоге телефон выключается. Максимальный ущерб батареи наносится во время зарядки на морозе.
Высокие температуры также негативно влияют на компоненты батарей. Необязательно использовать телефон в сауне или в жарких странах. Наши девайсы сильно нагреваются, когда мы нагружаем их тяжёлыми задачами. Игры, работа с фото или видео, навигация — всё это заставляет процессор и другие компоненты работать интенсивней и выделять больше тепла. Если подвергать смартфон интенсивной нагрузке и при этом заряжать его, мы неминуемо получим избыточный нагрев.
Чувствительность к интенсивному заряду или разряду
Быстрая зарядка ведёт к излишнему выделению тепла, а высокая температура вредит компонентам батареи. Кроме того, быстрая зарядка может приводить к образованию дендритов на аноде. Дендриты — это такие волокна из металлического лития. Эти образования могут стать причиной замыкания и выхода из строя батареи.
Безусловно, это крайне экстремальный случай и производители стараются его не допустить. Для этого разрабатывают различные протоколы защиты от перегрева и замыкания. Но образование дендритов всё равно негативно влияет на ресурс батарей.
Интенсивный разряд также сопровождается выделением излишнего тепла. К тому же тепло выделяют и другие компоненты: процессор, экран и радиомодули. Всё это ведёт к перегреву батареи и её деградации.
Высокая цена
Литиевые аккумуляторы довольно дороги в производстве — по сравнению с другими типами аккумуляторов, конечно. Дело в том, что сам по себе литий — это редкоземельный металл, и стоит он недёшево. Производство литиевых аккумуляторов негативно сказывается на окружающей среде. А сами аккумуляторы способны сильно отравлять почву, поэтому их обязательно нужно перерабатывать.
Небезопасность
Литий — очень активный металл, и батареи на его основе могут очень ярко и звонко воспламеняться. Один из самых красноречивых примеров — Samsung Galaxy Note 7. Неправильно спроектированная батарея и ряд неудачных совпадений могут натворить беды.
Получается так, что литиевые аккумуляторы довольно дорогие, с прихотливыми и нежными компонентами, да ещё и загрязняют окружающую среду. И тут у вас должен созреть вопрос: если литиевые батареи настолько плохи, почему мы всё ещё ими пользуемся? Где новые изобретения, революционные наноматериалы? Мы же в XXI веке живём!
Одним из таких революционных материалов является графен.
Что такое графен?
По сути, графен — это углерод, а углерод невероятно распространённый элемент на Земле. Графит, алмаз, сажа, графен — всё это углерод, а точнее, его аллотропные формы. Химическая формула у них идентична — «С», но то, как атомы углерода соединены друг с другом, и определяет свойства материала. Алмаз невероятно твёрдый, графит из грифеля карандаша легко можно сломать. Всё потому, что одни и те же атомы в графите и алмазе расположены по-разному.
Атомы в графене также расположены в пространстве особым образом. Во-первых, они выстроены толщиной в один атом. Во-вторых, атомы образуют шестиугольник, похожий на пчелиную соту:
Такая структура наделяет графен просто невероятными свойствами.
Графен — отличный проводник как электронов, так и тепла. Графен прочнее стали в 200 раз, при этом он невероятно гибкий, эластичный и почти прозрачный.
Из-за таких свойств графен получил огромную популярность в среде учёных: ему за пару лет придумали сотни сомнительных применений. В научном сообществе тестирование свойств графена стало почти мемом. Доходит до того, что в графен добавляют куриный помёт, чтобы проверить, как это отразится на его качествах.
Благодаря такому хайпу вокруг графена, на рынке появились графеновые куртки, платья, теннисные ракетки, машинное масло с графеном и ещё куча всякого бесполезного барахла, которое зачастую графена в своём составе не имело, а в лучшем случае графена добавляли сотые доли процента.
Дело в том, что чистый графен — чрезвычайно дорогой материал:
Может ли графен решить проблемы батарей?
До сих пор человечество не знает коммерчески успешных способов получения графена в промышленных масштабах. Высокая цена и трудности производства больших количеств графена — это одна из причин, почему мы не видим графеновых аккумуляторов в наших смартфонах. Но это не единственная причина. Использование графена в качестве катода или анода в батареях — не лучшая идея.
Именно поэтому графен не самый подходящий материал для долгосрочного хранения энергии.
В литиевых аккумуляторах заряд запасается за счёт того, что ионы лития проникают внутрь графитового анода и там прочно держатся. Этот процесс называется интеркаляцией. Литиевые аккумуляторы практически не подвержены саморазряду. Вы можете зарядить ваш Power Bank и через 2 месяца им воспользоваться.
Если мы возьмём батарею и вместо графита для изготовления анода применим графен, то ионы лития не смогут проникнуть внутрь графена, а будут накапливаться на поверхности. В таком случае ионы будут держаться за анод очень слабо, со временем ионы могут самопроизвольно покидать графен. В итоге мы получим саморазряд батарей.
Вариант, когда ионы накапливаются на поверхности анода и слабо за него держатся, хорошо подходит для суперконденсаторов. Это отличный вариант, когда нужно быстро и без особых усилий оторвать много ионов и перенести много энергии за короткий отрезок времени. Поэтому применение графена выглядит куда логичнее именно в суперконденсаторах, а вот для обычных аккумуляторов графен не особо подходит.
Но ведь графеновые аккумуляторы уже давно продаются
Мы регулярно слышим, что тот или иной стартап уже запустил в продажу графеновые Power Bank. Периодически проскакивают новости о том, что гиганты вроде Samsung уже буквально завтра начнут ставить в свои смартфоны графеновые батареи. На самом деле это очередная маркетинговая уловка. В таких батареях графен применяется как добавка для улучшения тех или иных характеристик литиевых батарей.
Например, если мы добавим графен в электроды, то повысим их проводимость. По сути, это останется всё такой же литиевый аккумулятор, характеристики которого улучшены графеном на 5–10 %. Подобных продуктов уже полно на рынке. Одним из первых смартфонов на моей памяти с применением графена в батарее был Honor Magic. Но какими-то выдающимися характеристиками его батарея не запомнилась.
Не так давно Наташа уже делала видео про Power Bank с графеном:
По сути, графеновые Power Bank отличаются от обычных только быстрой зарядкой. По большому счёту эти «банки» всё так же греются при зарядке и имеют заурядную ёмкость.
Чисто графеновые батареи на данном этапе развития технологий — это, скорее, маркетинг на хайповой теме. А вот литиевые гибриды, в которых графен используется как вспомогательный компонент, давно применяются. Samsung, Xiaomi, OPPO, OnePlus, Huawei и другие бренды вовсю добавляют графен в свои батареи.
Не революция, а эволюция
Если посмотреть на литиевые аккумуляторы под другим углом, то окажется, что они вовсе не стоят на месте, а постоянно развиваются — просто это развитие не скачкообразное, а очень плавное и постепенное. И самое главное: технология литиевых аккумуляторов ещё не достигла своего предела, и, возможно, графен поможет раскрыть потенциал литиевых аккумуляторов на 100 %.
Ёмкость аккумуляторов
Нам кажется, что увеличения ёмкости литиевых аккумуляторов нет, но это не так. Первые из них могли запасать порядка 100 Вт·ч/кг, спустя 20 лет постепенного развития эта величина удвоилась. На данный момент литиевые аккумуляторы могут запасать 200–240 Вт·ч/кг. По мнению учёных, им удастся увеличить энергоёмкость до 400 Вт·ч/кг. И, вполне возможно, именно графен поможет приблизить этот показатель к реальности.
Скорость зарядки
Это ещё один важный параметр, который уже сейчас улучшают за счёт графена. Так как графен имеет низкое сопротивление и прекрасно проводит ток, компоненты с добавлением графена меньше греются. Кроме того, графен столь же хорошо проводит и тепло, благодаря этому нагрев компонентов батареи лучше рассеивается.
В последние годы мы видим, как стремительно развиваются технологии быстрой зарядки. Не так давно гремели презентации технологий быстрых зарядок мощностью 120 Вт. И вот совсем недавно Xiaomi показала зарядку мощностью 200 Вт, которая наполняет батарею Mi 11 Pro ёмкостью 4000 мАч за восемь минут. Скорее всего, в батарее этого Mi 11 Pro не обошлось без добавления графена, но Xiaomi об этом умалчивает.
Чувствительность к температуре
Что пока не удалось значительно улучшить, так это чувствительность батарей к перепадам температуры и количество циклов заряда-разряда. В этих вопросах пока даже графен животворящий особо помочь не может. Точнее, графен помогает частично нивелировать негативное воздействие перегрева, а вот с низкими температурами бороться у него не выходит.
Продление срока службы
Что касается увеличения количества циклов заряда-разряда, то тут в помощь приходит другой компонент — кремний. Он позволяет увеличить ресурс литиевых батарей до 300 %, но побочный эффект кремния — увеличение размеров аккумуляторов. В итоге батареи с кремнием либо будут иметь такую же ёмкость, как и сейчас, но при этом будут физически в несколько раз больше, либо мы можем сделать компактную и долгоживущую батарею, которая будет иметь маленькую ёмкость.
Если подытожить, то можно сказать, что аккумуляторные технологии не стоят на месте, да и резких скачков не происходит. Но постепенный и очень уверенный прогресс всё же идёт. Не стоит ожидать от графена каких-то магических свойств. Графен не приведёт к революционному скачку в развитии батарей и уж точно не заменит технологию литиевых аккумуляторов, а только дополнит её. Думаю, не зря Илон Маск делает ставку именно на литиевые батарейки. Tesla не просто так вкладывает огромные средства в развитие именно литиевых аккумуляторов.
Что ж, нам остаётся только запастись терпением и ждать, когда технологии станут более совершенными и батареи окончательно избавятся от своих последних слабых мест!
Что такое графен и как он изменит нашу жизнь?
Впервые о графене заговорили в 2004 году, когда Андрей Гейм и Константин Новоселов — британские ученые российского происхождения — опубликовали статью в журнале Science [1]. В ней говорилось о новом материале, который получили с помощью обычного карандаша и скотча. Ученые просто снимали клейкой лентой слой за слоем, пока не дошли до самого тонкого — в один атом. В 2010-м за это их наградили Нобелевской премией. С тех прошло уже десять лет.
Что такое графен и чем он так уникален?
Углерод — это материал, состоящий из кристаллической решетки, которую образуют шестиугольники атомов. Графен — это один слой решетки толщиной в 1 атом.
Отсюда — его первое уникальное свойство: самый тонкий.
Такую структуру графен приобретает за счет sp2-гибридизации. Дело в том, что на внешней оболочке атома углерода расположены четыре электрона. При sp2-гибридизации три из них вступают в связь с соседними атомами, а четвертый находится в состоянии, которое образовывает энергетические зоны. В результате графен еще и прекрасно проводит электрический ток.
Уникальность графена в том, что он обладает такой же структурой, как и полупроводники, при этом он сам проводит электричество — как проводники. А еще у него высокая подвижность носителей заряда внутри материала. Поэтому графен в фото- и видеотехнике обнаруживает сигналы намного быстрее, чем другие материалы.
Графен обладает хорошей теплопроводностью, гибкостью и упругостью, он на 97% прозрачный. При этом, графен — самый прочный из известных материалов: прочнее стали и алмаза.
Миф о токсичности графена
Однако сейчас в биоэлектронике используют другой способ получения графена — путем химического осаждения из газовой фазы. Частицы получаются достаточно крупными. Потом их закрепляют на подложке, и проникнуть сквозь клеточную мембрану они уже не могут.
Где уже используют графен?
Сейчас графен успешно применяют в электронике. Самый массовый продукт — это пауэрбанк [3]: производители обещают, что сам он заряжается за 20 минут, а топовый смартфон заряжает наполовину за полчаса.
Существуют также графеновые куртки и платья. Последние, в частности, оснащены светодиодами [4], которые реагируют на дыхание и температуру тела, меняя цвет.
Теннисные ракетки с графеном весят до 300 грамм меньше, чем обычные, при той же силе удара.
Наконец, машинное масло с графеном призвано снизить износ двигателя.
Где можно применять графен в будущем?
Есть и еще одно свойство графена: он биосовместим, то есть взаимодействует с живыми клетками. Ученые обещают, что материал поможет диагностировать и лечить рак [5]. Это делают с помощью чипа с графеном, который придает повышенную чувствительность. На поверхность чипа высаживают раковые клетки и тестируют на них различные лекарства.
Такие чипы можно использовать и для тестирования других лекарств, а также — определения биомаркеров: иммуноглобулина, ДНК, нейрональных биорецепторов.
Из графена также планируют делать дешевые солнечные батареи, опресняющие устройства для морской воды, гибкие дисплеи, сверхпрочные бронежилеты, сверхчувствительные микропроцессоры, элементы для беспилотников и космических ракет, телефоны с бесконечной зарядкой и умную одежду.
Для России самым перспективным применением графена могут стать нефте- и газодобыча. На основе графена делают жидкости, которые позволят управлять толщиной и свойствами фильтрационной корки буровых растворов. А еще можно делать полимерные трубы и покрытия для нефте- и газопроводов с применением графена.
Графеновый бум
За 7 лет после вручения премии вышло больше 130 тыс. научных работ, посвященных графену и его свойствам. Доля таких исследований среди всех остальных выросла с 0,2% в 2010 году до 1% в 2016-м.
В научном сообществе тестирование свойств графена стало почти мемом. Доходит до того, что в графен добавляют куриный помет, чтобы проверить, как это отразится на его качествах [6].
Всего в мире зарегистрировано более 50 тыс. патентных заявок с упоминанием графена. Больше половины из них принадлежит Китаю, следом идут Южная Корея, США, Япония и Тайвань.
В Китае исследованиями занимаются государственные вузы. В 2013 году здесь создали Инновационный альянс графеновой промышленности, который пророчит Китаю в этой сфере долю в 80% от общемировой.
В остальных странах в графен активно вкладываются коммерческие компании. В Евросоюзе за это отвечает проект Graphene Flagship с инвестициями в €1 млрд [7]. В США — Национальная графеновая ассоциация, в консультативный совет которой входят представители Apple, IBM и Cisco.
В графене заинтересованы гиганты аэрокосмической отрасли: Boeing, Lockheed Martin, Airbus и Thales. Они рассчитывают, что новые материалы позволят им в разы снизить расход топлива — как композиты, которые экономят до 30% горючего в Boeing 787. Электронные корпорации включились в графеновую гонку в надежде, что это принесет им лидерство на рынке смартфонов и аксессуаров к ним.
Среди них — Samsung [8]: компания уже скупила десятки патентов, которых хватит на целую линейку продуктов с графеном. В частности, она представила новый тип аккумуляторов, которые можно будет заряжать за рекордные 12 минут. Такие появятся в новых смартфонах бренда не позднее 2021-го года. Их главный конкурент — Apple — запатентовала акустические диафрагмы с графеном для использования в устройствах следующих поколений. И это, судя по всему — только начало.
В России тоже занимаются изучением графена и даже патентуют электронные устройства на его основе — на базе в Центра фотоники и двумерных материалов МФТИ. Двое ученых-выпускников этого вуза — гендиректор ведущего производителя Graphene 3D Lab Inc. Елена Полякова и профессор Свободного университета Берлина Кирилл Болотин — входят в ту самую американскую ассоциацию.
Почему же графен до сих пор не изменил нашу жизнь?
Во-первых, он все еще очень дорогой. При этом пока нельзя однозначно посчитать, сколько его нужно и для каких целей. Для этого материала нет единой шкалы измерения, так как он может иметь разную структуру — в зависимости от способа получения.
Во-вторых, массовое производство графена пока не налажено, потому что нет технологий, которые бы позволили бы это: например, сложные электронные устройства с графеном делают вручную. Для графена нужна какая-то подложка — например, кварцевая — которая и определяет свойства конечного продукта. При этом пока еще не совсем понятно, какие именно это должны быть свойства.