графен что это такое простыми словами в медицине
Графен что это такое простыми словами в медицине
ДЛЯ ТОГО ЧТОБЫ СКАЧАТЬ СТАТЬЮ В ФОРМАТЕ PDF ВАМ НЕОБХОДИМО АВТОРИЗОВАТЬСЯ, ЛИБО ЗАРЕГИСТРИРОВАТЬСЯ
Реферат
Препараты на основе графена являются одними из перспективных материалов в биомедицине. Целью обзора являлся анализ данных о взаимодействии наночастиц оксида графена с разными типами клеток иммунной системы: нейтрофилами, моноцитами, макрофагами, дендритными клетками, Т- и B-лимфоцитами, NK- и iNKT-клетками. Поиск информации осуществляли в базе данных Scopus за период с 2011 по май 2020 гг. Основной вектор эффектов наночастиц оксида графена связан с активацией клеток и формированием провоспалительного типа иммунных реакций. В то же время, функционализация поверхности оксида графена при помощи биосовместимых полимеров ведет к снижению цитотоксичности, а в ряде случаев и к подавлению активации клеток. Взаимодействие наночастиц оксида графена с клеточными мембранами зависит от многочисленных факторов, таких как прямые и боковые размеры, степень окисления, функционализация, количество слоев, 3D-конфигурация, а также микробиологическая чистота и пирогенность графена. В совокупности, эти характеристики определяют, будут ли наночастицы оксида графена стимулировать или подавлять иммунные реакции. Очевидно, что эти разнонаправленные возможности наночастиц оксида графена могут быть полезны при разработке адъювантов, новых механизмов доставки лекарств и современных биосенсоров.
Ключевые слова: иммунная система, оксид графена, наночастицы, функционализация, нейтрофилы, макрофаги, дендритные клетки, Т-лимфоциты, В-лимфоциты, NK-клетки, iNKT-клетки.
INTERACTION OF GRAPHENE OXIDE NANOPARTICLES WITH CELLS OF THE IMMUNE SYSTEM
Graphene-based preparations are the most promising materials in biomedicine. This review is aimed at analyzing data on the interaction of graphene oxide nanoparticles with different types of cells of the immune system: neutrophils, monocytes, macrophages, dendritic cells, T- and B-lymphocytes, NK and iNKT cells. Scopus publications from 2011 to May 2020 were analyzed. The primary vector of the graphene oxide nanoparticles’ effects is associated with cell activation and the formation of a proinflammatory profile of the immune response. At the same time, the functionalization of the graphene oxide surface with the biocompatible polymers leads to a decrease in its cytotoxicity, and in some cases, to suppression of cell activation. The interaction of graphene oxide nanoparticles with cells depends on numerous factors, such as direct and lateral sizes, oxidation state, functionalization, number of layers, 3D configuration, as well as the microbiological purity and pyrogenicity of graphene. Together, these characteristics determine whether graphene oxide nanoparticles must stimulate or suppress the immune system. These multidirectional possibilities of graphene oxide can be useful in the development of adjuvants, new drug delivery mechanisms, and modern biosensors.
Keywords: immune system, graphene oxide, nanoparticles, functionalization, neutrophils, macrophages, dendritic cells, T lymphocytes, B lymphocytes, NK cells, iNKT cells.
Микрочипы в вакцинах? Анализ крови даёт удивительные результаты
Дискуссии о вакцинах и вакцинации от COVID-19 не затухают, а, наоборот, становятся всё более горячими. Даже серьёзные медики сомневаются, что у них есть полное представление о составе тех препаратов, которыми делаются прививки. Что же там находится на самом деле?
От чего умирают люди?
Скепсис российских медиков лишь усилился после недавнего заявления академика А. Гинцбурга (Институт Гамалеи, разработчик линейки «Спутников»). Он упомянул какие-то «маркеры» в препарате «Спутник V», которые позволяют определить, кто вакцинацию проходил, а кто лишь купил справку о вакцинации. Об этих «маркерах» в официальной информации о «Спутнике V» ничего не говорится.
Масла в огонь споров и сомнений по вопросу о составе прививочных препаратов добавила конференция учёных-патологоанатомов, которая прошла 20 сентября этого года в Германии в Институте патологии в Ройтлингене (Pathologischen Institut in Reutlingen). В мероприятии, как отмечают СМИ, участвовало от 30 до 40 специалистов, в том числе из Австрии. Ключевыми фигурами были:
Скриншот страницы pathologie-konferenz.de/en/
В центре внимания участников конференции были результаты вскрытий восьми умерших после вакцинации от COVID-19, которые проводились в этом году под руководством профессора Арне Буркхардта. Результаты упомянутых вскрытий удивительным образом подтверждают выводы коллеги Арне Буркхардта профессора, доктора Питера Ширмахера (Prof. Dr. Peter Schirmacher). Последний сделал вскрытия более 40 умерших, имевших инфицирование вирусом ковида. Питер Ширмахер уверенно заявил, что около трети из них умерли не от ковида, а от вакцинации против ковида.
Эти заявления были сделаны летом, власти и подконтрольные им СМИ пытались замолчать или опровергать выводы профессора. И вот подоспела конференция патологов в Ройтлингене, которая вновь вскрыла смертельную опасность вакцинаций против ковида.
Они уже в нас
Конференция транслировалась по видеосвязи. На ней были представлены многочисленные фотографии и рисунки, наглядно дополнявшие картину, которую описывали выступавшие патологи.
Анализ тонких тканей умерших проводился с помощью специального, так называемого «темнопольного» микроскопа. Он позволил выявить содержание в тканях посторонних микрочастиц, которые по форме представляют собой явно неживые структуры достаточно правильной геометрической формы. Внешне они выглядят… как микросхемы!
Скриншот кадра видео Cause of death after COVID-19 vaccination & Undeclared components of the COVID-19 vaccines / odysee.com
Версий появления таких инородных объектов две. Либо они были введены в кровоток готовыми, либо сформировались в организме человека из наночастиц, содержащихся в вакцине. Случайное попадание посторонних частиц в тело человека исключается, поскольку одни и те же инородные объекты выявлены у всех умерших после вакцинации.
Упомянутый выше профессор, доктор Вернер Берггольц как специалист по микрочипам высказал своё мнение по поводу «открытия» патологов. Он не исключает возможности использования выявленных в тканях умерших частиц в качестве тех самых «маркеров» и «идентификаторов», о присутствии которых в вакцинах высказывали подозрения сторонники так называемой «теории заговора».
Pfizer с дополнениями
Это размышление профессора вполне корреспондирует с мнением тех специалистов, которые пытались и пытаются выявить «маркеры» вакцин без вскрытия, путём углублённого химического и физического изучения самих препаратов. Есть ряд исследований, в которых говорится об обнаружении в составе по крайней мере двух препаратов – Pfizer и Moderna (мРНК-вакцины) – графена (также оксид графена), который никакой медицинской роли не выполняет, но вполне годится на роль «маркера», «идентификатора». Масла в огонь добавило заявление Карен Кингстон (Karen Kingston), бывшей сотрудницы компании Pfizer. Кингстон утверждает, что хотя и в патентах на вакцину Pfizer оксид графена не упоминается, он фигурирует в ряде сопроводительных документов.
Скриншот кадра видео Stew Peters show «Former Pfizer Employee Confirms Poison in COVID ‘Vaccine’»/ redvoicemedia.com
Ещё одно направление изучения «пытливыми скептиками» необъявленных производителями вакцин компонентов и свойств препаратов – попытки идентифицировать получивших вакцины людей с помощью специальных технических средств. Та яростная энергия, с которой «Силиконовая мафия» (ведущие IT-корпорации, контролирующие интернет и социальные сети) удаляет публикации подобного рода, также наводят на мысль, что нет дыма без огня.
Трудно поверить, что сказанное на конференции в Ройтлингене по поводу инородных частиц в прививочных препаратах – лишь «дым», который быстро рассеется. Дыма без огня не бывает. Просто этот огонь тщательно скрывают. До того момента, когда начнется вселенский пожар, который уже не остановишь.
Участники конференции приняли резолюцию с призывом к властям Германии, Австрии и других стран начать проводить массовые патологоанатомические исследования умерших после вакцинаций от ковида, обращаться с соответствующими запросами к производителям препаратов и, конечно же, немедленно остановить дальнейший процесс прививок от COVID-19 до полного прояснения вопроса.
Казалось бы, при чём тут Гейтс?
Идея вживления микрочипа в тело человека через прививочный укол вынашивалась мировой элитой давно. В «Prevent Disease.Com» (электронном издании США, специализирующемся на разоблачении планов американской и международной «медицинской мафии») ещё в 2009 году появилась статья «Are Populations Being Primed For Nano-Microchips Inside Vaccines?». Название статьи на русском: «Подталкивается ли население к принятию наночипов, упрятанных в вакцины?». Как отмечалось в указанной статье, ещё в последние годы ХХ века удалось разработать микрочипы нового поколения, основанные на использовании нанотехнологий. Сверхкомпактные (не больше пылинки, радиус порядка 5 микромиллиметра, что примерно в 10 раз меньше радиуса волоса) и недорогие. Вот что, в частности, говорилось в указанной выше статье: «Запущенный Всемирной организацией здравоохранения сценарий с пандемией свиного гриппа как нельзя лучше подходит для пропаганды и принуждения населения добровольно согласиться на введение микрочипов через нановакцины. Всё это будет сделано под лозунгом «высшего блага» для человечества».
Пять лет тому назад была запущена частно-государственная инициатива под кодовым названием «ID2020». Её инициатором был Билл Гейтс, основатель и руководитель IT-корпорации Microsoft, одновременно основатель и руководитель крупнейшего в США благотворительного фонда. Инициатива была поддержана ООН. Суть её проста – провести глобальную цифровую идентификацию населения для того, чтобы мировая элита могла его держать под своим контролем. В первых выступлениях Билла Гейтса как главного энтузиаста тотальной цифровой идентификации он не скрывал, что идентификация через чипизацию является самым простым и надёжным способом решения поставленной задачи.
Но встретив непонимание и даже гневные протесты со стороны ряда политиков и общественных деятелей, Гейтс больше эту идею не озвучивал. И, как считают некоторые эксперты, продолжал её двигать, давая деньги на разработки наночипов, которые станут «бесплатной добавкой» к прививочным препаратам. Решением задачи «наночип и вакцина в одном флаконе» занимались совместно, в тесной кооперации две структуры, находящиеся под контролем Билла Гейтса: упомянутое выше частно-государственное партнёрство «ID2020» и Альянс по вакцинациям GAVI (также частно-государственное партнёрство). Уже в 2018 году все упоминания о наночипах в составе вакцин были удалены с сайтов «ID2020» и GAVI.
Что с того?
Хотя с конференции в Ройтлингене прошло почти два месяца, вы наверняка ничего про неё не слышали – и это яркий пример контроля, установленного «Силиконовой мафией» над каналами распространения информации.
Видео и другие материалы конференции блокируют всеми возможными способами, а там, где нельзя заблокировать, выступают с плакатными «разоблачениями» прозвучавших там «фейков».
Чего только не сделаешь ради воспитания в людях доверия к «спасительным» вакцинам!
Что такое графен и как он изменит нашу жизнь?
Впервые о графене заговорили в 2004 году, когда Андрей Гейм и Константин Новоселов — британские ученые российского происхождения — опубликовали статью в журнале Science [1]. В ней говорилось о новом материале, который получили с помощью обычного карандаша и скотча. Ученые просто снимали клейкой лентой слой за слоем, пока не дошли до самого тонкого — в один атом. В 2010-м за это их наградили Нобелевской премией. С тех прошло уже десять лет.
Что такое графен и чем он так уникален?
Углерод — это материал, состоящий из кристаллической решетки, которую образуют шестиугольники атомов. Графен — это один слой решетки толщиной в 1 атом.
Отсюда — его первое уникальное свойство: самый тонкий.
Такую структуру графен приобретает за счет sp2-гибридизации. Дело в том, что на внешней оболочке атома углерода расположены четыре электрона. При sp2-гибридизации три из них вступают в связь с соседними атомами, а четвертый находится в состоянии, которое образовывает энергетические зоны. В результате графен еще и прекрасно проводит электрический ток.
Уникальность графена в том, что он обладает такой же структурой, как и полупроводники, при этом он сам проводит электричество — как проводники. А еще у него высокая подвижность носителей заряда внутри материала. Поэтому графен в фото- и видеотехнике обнаруживает сигналы намного быстрее, чем другие материалы.
Графен обладает хорошей теплопроводностью, гибкостью и упругостью, он на 97% прозрачный. При этом, графен — самый прочный из известных материалов: прочнее стали и алмаза.
Миф о токсичности графена
Однако сейчас в биоэлектронике используют другой способ получения графена — путем химического осаждения из газовой фазы. Частицы получаются достаточно крупными. Потом их закрепляют на подложке, и проникнуть сквозь клеточную мембрану они уже не могут.
Где уже используют графен?
Сейчас графен успешно применяют в электронике. Самый массовый продукт — это пауэрбанк [3]: производители обещают, что сам он заряжается за 20 минут, а топовый смартфон заряжает наполовину за полчаса.
Существуют также графеновые куртки и платья. Последние, в частности, оснащены светодиодами [4], которые реагируют на дыхание и температуру тела, меняя цвет.
Теннисные ракетки с графеном весят до 300 грамм меньше, чем обычные, при той же силе удара.
Наконец, машинное масло с графеном призвано снизить износ двигателя.
Где можно применять графен в будущем?
Есть и еще одно свойство графена: он биосовместим, то есть взаимодействует с живыми клетками. Ученые обещают, что материал поможет диагностировать и лечить рак [5]. Это делают с помощью чипа с графеном, который придает повышенную чувствительность. На поверхность чипа высаживают раковые клетки и тестируют на них различные лекарства.
Такие чипы можно использовать и для тестирования других лекарств, а также — определения биомаркеров: иммуноглобулина, ДНК, нейрональных биорецепторов.
Из графена также планируют делать дешевые солнечные батареи, опресняющие устройства для морской воды, гибкие дисплеи, сверхпрочные бронежилеты, сверхчувствительные микропроцессоры, элементы для беспилотников и космических ракет, телефоны с бесконечной зарядкой и умную одежду.
Для России самым перспективным применением графена могут стать нефте- и газодобыча. На основе графена делают жидкости, которые позволят управлять толщиной и свойствами фильтрационной корки буровых растворов. А еще можно делать полимерные трубы и покрытия для нефте- и газопроводов с применением графена.
Графеновый бум
За 7 лет после вручения премии вышло больше 130 тыс. научных работ, посвященных графену и его свойствам. Доля таких исследований среди всех остальных выросла с 0,2% в 2010 году до 1% в 2016-м.
В научном сообществе тестирование свойств графена стало почти мемом. Доходит до того, что в графен добавляют куриный помет, чтобы проверить, как это отразится на его качествах [6].
Всего в мире зарегистрировано более 50 тыс. патентных заявок с упоминанием графена. Больше половины из них принадлежит Китаю, следом идут Южная Корея, США, Япония и Тайвань.
В Китае исследованиями занимаются государственные вузы. В 2013 году здесь создали Инновационный альянс графеновой промышленности, который пророчит Китаю в этой сфере долю в 80% от общемировой.
В остальных странах в графен активно вкладываются коммерческие компании. В Евросоюзе за это отвечает проект Graphene Flagship с инвестициями в €1 млрд [7]. В США — Национальная графеновая ассоциация, в консультативный совет которой входят представители Apple, IBM и Cisco.
В графене заинтересованы гиганты аэрокосмической отрасли: Boeing, Lockheed Martin, Airbus и Thales. Они рассчитывают, что новые материалы позволят им в разы снизить расход топлива — как композиты, которые экономят до 30% горючего в Boeing 787. Электронные корпорации включились в графеновую гонку в надежде, что это принесет им лидерство на рынке смартфонов и аксессуаров к ним.
Среди них — Samsung [8]: компания уже скупила десятки патентов, которых хватит на целую линейку продуктов с графеном. В частности, она представила новый тип аккумуляторов, которые можно будет заряжать за рекордные 12 минут. Такие появятся в новых смартфонах бренда не позднее 2021-го года. Их главный конкурент — Apple — запатентовала акустические диафрагмы с графеном для использования в устройствах следующих поколений. И это, судя по всему — только начало.
В России тоже занимаются изучением графена и даже патентуют электронные устройства на его основе — на базе в Центра фотоники и двумерных материалов МФТИ. Двое ученых-выпускников этого вуза — гендиректор ведущего производителя Graphene 3D Lab Inc. Елена Полякова и профессор Свободного университета Берлина Кирилл Болотин — входят в ту самую американскую ассоциацию.
Почему же графен до сих пор не изменил нашу жизнь?
Во-первых, он все еще очень дорогой. При этом пока нельзя однозначно посчитать, сколько его нужно и для каких целей. Для этого материала нет единой шкалы измерения, так как он может иметь разную структуру — в зависимости от способа получения.
Во-вторых, массовое производство графена пока не налажено, потому что нет технологий, которые бы позволили бы это: например, сложные электронные устройства с графеном делают вручную. Для графена нужна какая-то подложка — например, кварцевая — которая и определяет свойства конечного продукта. При этом пока еще не совсем понятно, какие именно это должны быть свойства.
2D-почтальон: системы доставки лекарств на основе графена
Графен — двумерный материал из одноатомного слоя углерода, легкий и прочный. Благодаря своим уникальным свойствам он стал любимчиком во многих отраслях науки, в том числе и в биофармацевтике.
Автор
Редакторы
Статья на конкурс «био/мол/текст»: Адресная доставка — популярный тренд в фармакологии. Ученые всего мира несколько десятилетий искали идеальный переносчик для лекарственных препаратов: безопасный и эффективный. Перепробовали все: магнитные частицы и углеродные нанотрубки, липосомы и биополимеры. И, кажется, наконец нашли самый безопасный и эффективный способ попасть точно в цель.
Конкурс «био/мол/текст»-2018
Эта работа опубликована в номинации «Биофармацевтика» конкурса «био/мол/текст»-2018.
Генеральный спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.
Спонсором приза зрительских симпатий выступил медико-генетический центр Genotek.
От левитирующих лягушек к Нобелевской премии
Крохотный переулок академгородка в Манчестере, факультет физики — место, где всё началось. В 2004 году, в один из пятничных вечеров двое физиков, выходцев из России — Андрей Гейм и Константин Новоселов — почти случайно совершили важнейшее открытие. Они смогли выделить графен — двумерный материал, состоящий из одноатомного слоя углерода. Более полувека назад теоретические расчеты предсказали его существование, но получить графен удалось только спустя десятилетия.
В тот вечер физики в своей лаборатории просто баловались со скотчем — не шотландским, а канцелярским. Они приклеивали клейкую ленту на кусок графита (как тот, что используется в простых карандашах) и пытались отшелушить тончайшие слои углерода. В лаборатории была традиция — каждую пятницу по вечерам сотрудники откладывали в сторону свои основные проекты и занимались «пятничной наукой» — диковинными экспериментами, которые вряд ли могли рассчитывать на успех или финансирование. За всё время существования пятничного клуба удача улыбнулась физикам лишь трижды. В первый раз Андрей Гейм сумел провести успешный эксперимент по левитации живой лягушки, за что, кстати, в 2000 году получил Шнобелевскую премию. Второй успех — создание gecko tape: клейкой ленты с крошечными волосками вроде тех, которыми покрыты лапы гекконов. Ну а последним и самым важным пятничным открытием стал графен. В 2010 году за «новаторские эксперименты по исследованию графена» Гейм и Новоселов удостоились Нобелевской премии по физике. Андрей Гейм при этом стал первым человеком, получившим и Нобелевскую, и Шнобелевскую премии [1].
Удержать слона
По сути графен — это тонкий одноатомный слой графита. Его атомы образуют шестигранные кольца, похожие на пчелиные соты. Он напоминает множество ароматических молекул (таких как бензол), связанных между собой в одной плоскости (рис. 1). Графен очень химически и механически устойчив, поэтому его часто используют в биомедицине.
Рисунок 1. У углерода есть несколько аллотропных модификаций, которые кардинально отличаются друг от друга по свойствам
А еще он очень легкий — в 2017 году китайские ученые разработали графеновый аэрогель, который на 99% состоит из воздуха. При этом материал выдерживает вес в 4000 раз больше своего собственного [3].
Самое удивительное свойство графена — он сам может создавать энергию. Графен хоть и двумерен, но никогда не бывает совершенно плоским. Его структура напоминает скорее рябь на воде — случайные колебания атомов создают на поверхности «волны», которые выгибаются попеременно то в одну, то в другую сторону, генерируя энергию [4].
Гибридные технологии
Самое первое исследование в этой области провели в Стэнфордском университете (Калифорния, США) в 2008 году. Авторы впечатлились успехами углеродных нанотрубок в биомедицине и задались вопросом: «А можно ли в доставке лекарств использовать графен?» [9]. Наряду с очевидными преимуществами у материала были и существенные недостатки.
С одной стороны, большая площадь поверхности позволяет разместить на одном слое графена множество молекул — масса лекарства может быть в два раза больше, чем масса самого носителя [10].
Про гидрофобность «Биомолекула» подробно писала в статье «Физическая водобоязнь» [13].
Поэтому в биомедицине предпочитают использовать альтернативные формы графена. Сейчас самый распространенный препарат — оксид графена. Он содержит множество гидрофильных групп (например карбоксильные). Это повышает биосовместимость материала и предотвращает слипание чешуек друг с другом.
Другой способ модифицировать графен — покрыть его полиэтиленгликолем (ПЭГ), декстраном или альгинатом. Эти вещества увеличивают время циркуляции, биосовместимость и растворимость графена. Что, в свою очередь, уменьшает его токсичность и негативные последствия для организма [14].
Модифицированные формы графена стали широко изучать в последние несколько лет как новый переносчик лекарственных средств: противоопухолевых препаратов, антибиотиков, антител и даже генетического материала. В отличие от традиционной химиотерапии, при которой препараты свободно путешествуют по кровотоку и равномерно распределяются по всему организму, использование специальных носителей делает процесс точечным и направленным. Такой себе почтальон от медицины.
Контролировать доставку можно через внешние (температура, ультразвук, магнитные, световые и электрические поля) или внутренние (рН, концентрация ферментов, окислительно-восстановительные реакции) стимулы (рис. 2) [14].
Рисунок 2. Способы контроля доставки лекарств. Условные обозначения: AMF — переменное магнитное поле; NIR — ближнее инфракрасное излучение; DTT — дитиотреитол; GSH — глутатион.
Из-за сложного строения человеческого тела и труднодоступного расположения опухолей используют несколько разных стимулов одновременно. Согласно исследованиям, гибридная везикула на основе оксида графена не только вмещает большую дозу противоопухолевого препарата доксорубицина (DOX), но также может последовательно высвобождать его при инфракрасном облучении и под действием кислой внутриклеточной среды (рис. 3). При лазерном облучении везикула «лопается», и в полость клетки выходят молекулы DOX, закрепленные на чешуйках оксида графена. Затем в дело вступает кислотная среда — за счет понижения pH DOX высвобождается и направляется в ядро клетки [15].
Рисунок 3. Схема последовательного высвобождения DOX, вызванного излучением NIR-лазера (i) и кислой средой раковой клетки (ii)
Такие гибридные подходы повышают эффективность доставки лекарства и позволят снизить его дозировку. А следовательно, уменьшить побочные эффекты [10], [14].
Доставить по адресу
Системы доставки на основе графена развиваются в двух направлениях: доставка лекарств и доставка генетического материала.
Доставка лекарств
Для адресной доставки лекарств есть несколько подходов.
Первый, наиболее простой — прикрепление препарата на поверхность носителя напрямую. Например, как упомянутый выше доксорубицин, прочно связанный с поверхностью оксида графена и высвобождающийся только в кислотной среде опухоли.
Более сложный способ — прикрепить к поверхности носителя не только действующее вещество, но и направляющие молекулы — лиганды. Это могут быть, например, поликлональные антитела, фолиевая кислота или трансферрин. Они распознают клетки-мишени и связываются с ними [16].
Иногда лиганд может быть одновременно и лекарством.
К примеру, международная группа ученых из Университета Северной Каролины и Китайского фармацевтического университета показали, что противоопухолевый белок TRAIL может связываться с поверхностью раковых клеток. В своем исследовании авторы прикрепили два препарата — TRAIL и DOX — к полоскам графена (рис. 4). TRAIL эффективен при доставке к наружной мембране раковой клетки, а DOX — при доставке к ее ядру. Когда конструкция контактирует с раковой клеткой, рецепторы на ее поверхности связываются с белком TRAIL, что позволяет клетке поглотить загруженный доксорубицином графен и оставляет TRAIL на поверхности, где он запускает процесс гибели клеток. Графен с доксорубицином попадают внутрь клетки, кислая среда отделяет DOX от графена и дает ему возможность атаковать ядро [17].
Рисунок 4. Схема конструкции на основе графена для одновременной доставки TRAIL и DOX
Доставка генетического материала
Генная терапия для лечения таких заболеваний, как болезнь Паркинсона, кистозный фиброз (он же — муковисцидоз [18]) и различные виды рака, требует наличия транспортера для защиты целевого гена от разрушения. Сейчас в 70% случаев для этого исследователи используют вирусные векторы. Но учитывая их непредсказуемость, многие пытаются создать синтетические аналоги на основе липосом или производных графена. Гибридные молекулы на основе графена вмещают больший объем ДНК или РНК, защищают их от деградации и облегчают поглощение клеткой [19]. «Загрузить» нуклеиновые кислоты на графеновые чешуйки можно благодаря гидрофобным и характерным для аромамолекул π-π взаимодействиям. Последние образуются между кольцевыми структурами нуклеотидов и шестиугольной решеткой углерода в оксиде графена (рис. 5). Предполагают, что участие также принимают и силы Ван-дер-Ваальса. А некоторые исследования показывают, что двойная спираль лучше связывается с оксидом графена при высокой концентрации соли и низком уровне рH [19], [20].
Рисунок 5. Схематическое изображение связывания одноцепочечной ДНК с листом функционализированного графена. Находящаяся поблизости ДНКаза легко разрушает свободную цепь, но не вредит связанной с графеном.
Как именно графен с генетическим материалом попадает в клетку — пока остается загадкой. Из возможных вариантов — фагоцитоз и опосредованный белком клатрином эндоцитоз [7]. Кроме того, в некоторых экспериментах используют инфракрасное излучение — оно нарушает структуру мембраны и облегчает проникновение внутрь клетки [19].
Вместо послесловия
Применение графена в медицине не ограничивается только системами доставки. У графена обнаружена способность ускорять дифференцировку стволовых клеток [22] и селективно связывать антитела [23], он используется в клеточной инженерии [24], и из него делают даже вживляемые в организм электроды [25]. Этот материал используют как контрастное вещество при МРТ и КТ [26]. А при добавлении графена в смесь ПЦР увеличивается выход ДНК!
Подобным устройствам, используемым в медицине, на «Биомолекуле» посвящена целая тема: «Носимые технологии». — Ред.
Скорость, с которой графен ворвался во многие сферы науки, включая биомедицину, доказывает, что для великого открытия иногда нужны лишь пятничный вечер и немного скотча.