вторичные метаболиты что такое

Вторичные метаболиты: характеристики и применение

Вторичные метаболиты являются важнейшими физиологически активными соединениями в мире растений. Их количество, исследованное наукой, увеличивается с каждым годом. В настоящий момент изучено около 15 % всех видов растений на предмет наличия этих веществ. Они обладают также высокой биологической активностью в отношении организма животных и человека, что определяет их потенциал как фармацевтических средств.

Что такое вторичные метаболиты?

вторичные метаболиты что такое. Смотреть фото вторичные метаболиты что такое. Смотреть картинку вторичные метаболиты что такое. Картинка про вторичные метаболиты что такое. Фото вторичные метаболиты что такое

вторичные метаболиты что такое. Смотреть фото вторичные метаболиты что такое. Смотреть картинку вторичные метаболиты что такое. Картинка про вторичные метаболиты что такое. Фото вторичные метаболиты что такое Вам будет интересно: Сколько значений у слова «звать»?

Отличительной особенностью всех живых организмов является то, что в них происходит метаболизм – обмен веществ. Он представляет собой совокупность химических реакций, в результате которых вырабатываются первичные и вторичные метаболиты.

Разница между ними состоит в том, что первые характерны для всех существ (синтез белков, аминокарбоновых и нуклеиновых кислот, углеводов, пуринов, витаминов), а вторые свойственны определенным видам организмов и не участвуют в росте и процессе размножения. Однако и они выполняют определенные функции.

В животном мире вторичные соединения вырабатываются редко, чаще они поступают в организм вместе с растительной пищей. Эти вещества синтезируются преимущественно в растениях, грибах, губках и одноклеточных бактериях.

Признаки и особенности

вторичные метаболиты что такое. Смотреть фото вторичные метаболиты что такое. Смотреть картинку вторичные метаболиты что такое. Картинка про вторичные метаболиты что такое. Фото вторичные метаболиты что такое Вам будет интересно: Елена Сергеевна Вентцель: биография, личная жизнь, достижения

вторичные метаболиты что такое. Смотреть фото вторичные метаболиты что такое. Смотреть картинку вторичные метаболиты что такое. Картинка про вторичные метаболиты что такое. Фото вторичные метаболиты что такое

В биохимии выделяют следующие основные признаки вторичных метаболитов растений:

высокая биологическая активность;

небольшая молекулярная масса (2-3 кДа);

выработка из небольшого количества исходных веществ (5-6 аминокислот для 7 алкалоидов);

синтез присущ отдельным видам растений;

образование на более поздних стадиях развития живого организма.

Любой из этих признаков не является обязательным. Так, вторичные фенольные метаболиты вырабатываются у всех видов растений, а натуральный каучук имеет высокую молекулярную массу. Производство вторичных метаболитов в растениях происходит только на основе белков, липидов и углеводов под воздействием различных ферментов. Собственного пути для синтеза у таких соединений нет.

Для них характерны также следующие особенности:

наличие в разных частях растения;

неравномерное распределение в тканях;

локализация в определенных отсеках клетки для обезвреживания биологической активности вторичных метаболитов;

наличие базовой структуры (чаще всего в ее роли выступают гидроксильные, метильные, метоксильные группы), на основе которой образуются другие варианты соединений;

разные типы изменения структуры;

способность перехода в неактивную, «запасную» форму;

отсутствие прямого участия в обмене веществ.

Вторичный метаболизм часто рассматривают как способность живого организма взаимодействовать с собственными ферментами и генетическим материалом. Основной процесс, в результате которого образуются вторичные соединения – это диссимиляция (распад продуктов первичного синтеза). При этом выделяется некоторое количество энергии, которая участвует в производстве вторичных соединений.

Функции

вторичные метаболиты что такое. Смотреть фото вторичные метаболиты что такое. Смотреть картинку вторичные метаболиты что такое. Картинка про вторичные метаболиты что такое. Фото вторичные метаболиты что такое

Первоначально эти вещества считались ненужными продуктами жизнедеятельности живых организмов. В настоящее время установлено, что они играют определенную роль в обменных процессах:

фенолы – участие в фотосинтезе, дыхании, передаче электронов, выработке фитогормонов, развитии корневой системы; привлечение насекомых-опылителей, антимикробное действие; окраска отдельных частей растения;

дубильные вещества – выработка устойчивости к грибковым заболеваниям;

каротиноиды – участие в фотосинтезе, защита от фотоокисления;

алкалоиды – регулирование роста;

изопреноиды – защита от насекомых, бактерий, животных;

стеролы – регулирование проницаемости клеточных мембран.

Основная функция вторичных соединений в растениях – экологическая: защита от вредителей, патогенных микроорганизмов, адаптация к внешним условиям. Так как факторы среды значительно отличаются для разных видов флоры, то спектр этих соединений практически безграничен.

Классификации

Существует несколько принципиально разных классификаций вторичных метаболитов:

Тривиальная. Вещества разделяют на группы в соответствии с их определенными свойствами (сапонины образуют пену, горечи имеют соответствующий вкус и так далее).

Химическая. Основывается на характеристиках химической структуры соединений. В настоящее время является наиболее распространенной. Недостатком такой классификации является то, что вещества одной группы могут отличаться по способу производства и свойствам.

Биохимическая. Во главе этого типа систематизации лежит способ биосинтеза. Является наиболее научно обоснованной, но ввиду малоизученности биохимии растений применение этой классификации ограничено.

Функциональная. Основывается на определенных функциях веществ в живом организме. В одной группе могут находиться вторичные метаболиты, имеющие разную химическую структуру.

Сложность классификации заключается в том, что каждая группа вторичных метаболитов тесно связана с остальными. Так, горечи (класс терпенов) являются гликозидами, а каротиноиды (производные тетратерпенов) – это витамины.

Основные группы

вторичные метаболиты что такое. Смотреть фото вторичные метаболиты что такое. Смотреть картинку вторичные метаболиты что такое. Картинка про вторичные метаболиты что такое. Фото вторичные метаболиты что такое

Ко вторичным метаболитам клеток растений относят следующие типы веществ:

алкалоиды (пиридиновые, имидазоловые, пуриновые, беталаины, гликоалкалоиды, протоалкалоиды и другие);

антраценпроизводные (производные хризацина, антрона, ализарина и других соединений);

гликозиды (монозиды, биозиды и олигозиды, цианогенные гликозиды и тиогликозиды);

изопреноиды (терпены и их производные – терпеноиды и стероиды);

фенольные соединения и другие.

Применение

вторичные метаболиты что такое. Смотреть фото вторичные метаболиты что такое. Смотреть картинку вторичные метаболиты что такое. Картинка про вторичные метаболиты что такое. Фото вторичные метаболиты что такое

Вторичные метаболиты оказывают активное воздействие на органы и системы человека и животных, поэтому они находят широкое применение в фармакологии и ветеринарии, используются в качестве усилителей вкуса и аромата в пищевых продуктах. Некоторые растения, накапливающие эти вещества в значительном количестве, используются в качестве сырья в производстве технических материалов.

За рубежом, в странах с развитой химической промышленностью, около четверти всех соединений, применяемых в фармации, имеют растительное происхождение. Ценное лечебное действие вторичных метаболитов связано с такими их свойствами, как:

широкий спектр действия;

минимум побочных эффектов даже при длительном приеме;

комплексное воздействие на организм;

Так как данные соединения являются еще малоизученными, то дальнейшее их исследование может привести к созданию принципиально новых фармацевтических препаратов.

Источник

Вторичные метаболиты

Вторичные метаболиты — органические вещества, синтезируемые организмом, но не участвующие в росте, развитии или репродукции.

Содержание

Особенности вторичных метаболитов

Вторичные метаболиты растений

У растений вторичные метаболиты участвуют во взаимодействии растения с окружающей средой, защитных реакицях (например, яды). К ним относятся следующие классы:

вторичные метаболиты что такое. Смотреть фото вторичные метаболиты что такое. Смотреть картинку вторичные метаболиты что такое. Картинка про вторичные метаболиты что такое. Фото вторичные метаболиты что такое

вторичные метаболиты что такое. Смотреть фото вторичные метаболиты что такое. Смотреть картинку вторичные метаболиты что такое. Картинка про вторичные метаболиты что такое. Фото вторичные метаболиты что такое

Вторичные метаболиты бактерий

Для своей жизнедеятельности бактерии также производять широокий спектр вторичных метаболитов. Среди них витамины, антибиотики, алкалоиды и прочие. Методами биотехнологии человек получает данные вещества для своих нужд. [1]

См. также

Источники

Примечания

Полезное

Смотреть что такое «Вторичные метаболиты» в других словарях:

вторичные метаболиты — см. метаболиты вторичные. (Источник: «Микробиология: словарь терминов», Фирсов Н.Н., М: Дрофа, 2006 г.) … Словарь микробиологии

Метаболиты — (от греч. μεταβολίτης, metabolítes) продукты метаболизма каких либо соединений. Метаболиты бывают первичными, вторичными, промежуточными (подвергающимися дальнейшим биотрансформациям) и конечными, не подвергающимися дальнейшей… … Википедия

метаболиты вторичные — соединения, часто сложного состава, не являющиеся основными промежуточными соединениями метаболизма клетки, образуются в его тупиковых ветвях. М. в. растений являются, напр., алкалоиды. Микроорганизмы образуют М. в., как правило, в период… … Словарь микробиологии

Метаболомика — Метаболомика это «систематическое изучение уникальных химических „отпечатков пальцев“ специфичных для процессов, протекающих в живых клетках» конкретнее, изучение их низкомолекулярных метаболических профилей.[1] Метаболом представляет … Википедия

Химия природных соединений — (ХПС) раздел органической химии, изучающий химические соединения, входящие в состав живых организмов, природные пути их превращений и методы искусственного получения. Как наука, химия природных соединений возникла одновременно с… … Википедия

МИКРОБИОЛОГИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ — производство какого либо продукта с помощью микроорганизмов. Осуществляемый микроорганизмами процесс называют ферментацией; емкость, в которой он протекает, называется ферментером (или биореактором). Процессы, протекающие при участии бактерий,… … Энциклопедия Кольера

Актиномицеты — Streptomyces sp … Википедия

Микотоксины — Рост плесневого гриба на поверхности жидкости Микотоксины (от греч … Википедия

Микотоксины/Temp — Микотоксины (от греч. μύκης (mykes, mukos) «гриб») токсины, низкомолекулярные вторичные метаболиты, продуцируемые микроскопическими плесневыми грибами.Микотоксины являются природными загрязнителями зерна злаковых, бобовых, семян… … Википедия

Источник

Роль микробиоты кишечника в поддержании здоровья

Микрофлора представляет собой метаболически активную и сложную экосистему, состоящую из сотен тысяч микроорганизмов — бактерий, вирусов и некоторых эукариот. Подобно невидимому чулку, биоплёнка покрывает все слизистые нашего организма и кожу. Микробиота объединяет более чем 10 14 (сто биллионов) клеток микроорганизмов, что в 10 раз превышает число клеток самого организма. Микробиота находится в содружественных отношениях с организмом человека: организм хозяина предоставляет среду обитания и питательные вещества, микроорганизмы защищают организм от патогенных возбудителей, способствуют поддержанию нормальных иммунологических, метаболических и моторных функций. Выделяют несколько важных биотопов, которые отличаются плотностью распределения микроорганизмов и составом: кожные покровы, слизистые оболочки ЖКТ, дыхательных путей, урогенитального тракта и проч. Самой многочисленной считается микробиота кишечника, на её долю приходится 60% микроорганизмов, колонизирующих организм человека.

Микрофлора кишечника состоит из группы микроорганизмов, представленных более чем 1000 видами, 99% из которых приходится на 30–40 главных видов. В научных кругах кишечную микрофлору называют также дополнительным органом.

Состояние микробиоты кишечника определяет качество и продолжительность жизни. У каждого человека есть свой индивидуальный характер распределения и состава микробиоты. Частично он определяется генотипом хозяина и первоначальной колонизацией, которая происходит сразу после рождения. Различные факторы, такие как тип родов, кормление грудью, образ жизни, диетарные предпочтения, гигиенические условия и условия окружающей среды, использование антибиотиков и вакцинация, могут определять окончательные изменения в структуре микробиоты.

При изменении состава или функции микробиоты развивается дисбиоз. Дисбиотические состояния изменяют моторику кишечника и его проницаемость, а также искажают иммунный ответ, тем самым создавая предпосылки для развития провоспалительного состояния. Такие изменения, особенно в отношении иммунных и метаболических функций хозяина, могут вызывать или способствовать возникновению ряда заболеваний, например, сахарного диабета, ожирения, неврологических и аутоиммунных заболеваний. Недавние исследования показали, что микробиота участвует в этиопатогенезе многих гастроэнтерологических заболеваний, таких как синдром раздраженного кишечника, воспалительные заболевания кишечника, целиакия, неалкогольный стеатогепатит и новообразования желудочно-кишечного тракта.

Кишечная микрофлора и иммунитет

Кишечная микробиота имеет решающее значение для развития лимфоидных тканей, а также для поддержания и регуляции кишечного иммунитета.

В кишечнике происходит сенсибилизация иммуноцитов, которые затем заселяют другие слизистые оболочки и циркулируют между различными органами. Этот механизм обеспечивает формирование клонов лимфоцитов и образование специфических антител в участках слизистой оболочки, отдалённых от очага первичной сенсибилизации.

Иммунокомпетентные ткани пищеварительного тракта объединены в лимфоидную ткань. Лимфоидная ткань представлена лимфоцитами, расположенными между эпителиальными клетками кишечника, лимфоцитами собственного слоя, пейеровыми бляшками (скопления лимфоидной ткани в тонкой кишке) и лимфоидными фолликулами.

Попавшие в просвет кишечника или на слизистые оболочки антигены распознаются иммуноглобулинами памяти (IgG), после чего информация передаётся в иммунокомпетентные клетки слизистой оболочки, где из сенсибилизированных лимфоцитов клонируются плазматические клетки, ответственные за синтез IgА и IgМ. В результате защитной деятельности этих иммуноглобулинов включаются механизмы иммунореактивности или иммунотолерантности. Благодаря индукции иммунологической толерантности в кишечнике не возникают нежелательные воспалительные реакции против кишечной микробиоты и пищевых белков.

Кишечная микробиота и обмен веществ

Кишечная микробиота вносит непосредственный вклад в метаболизм питательных веществ и витаминов, необходимых для жизнедеятельности организма хозяина, при этом извлекая энергию из пищи. Эта энергия образуется путём реакции сбраживания не усваиваемых углеводов (клетчатки), в результате реакции образуются короткоцепочечные жирные кислоты, водород и углекислый газ.

Короткоцепочные жирные кислоты обеспечивают работу колоноцитов.

Короткоцепочные жирные кислоты считаются тонкими регуляторами иммунитета, энергетического обмена и метаболизма жировой ткани. Например, короткоцепочные жирные кислоты участвуют во взаимодействии бактерий и иммунитета, подавляя сигналы, которые могут привести к развитию аутоиммунных реакций. Пропионовая и масляная жирная кислота положительно влияют на метаболизм глюкозы. Наконец, короткоцепочные жирные кислоты обеспечивают подкисление просвета толстой кишки, предотвращая рост бактериальных патогенов.

Кишечная микробиота принимает непосредственное участие в метаболизме желчных кислот, источником которых является холестерин. В печени из холестерина синтезируются первичные желчные кислоты — холевая и хенодезоксихолевая, которые поступают в кишечник. Бактероиды и лактобациллы далее превращают первичные желчные кислоты во вторичные желчные кислоты — дезоксихолевую и литохолевую. Изменение нормального баланса кишечных бактерий приводит к неадекватному синтезу желчных кислот.

Микробиота и нервная система

Ещё более удивительные данные о взаимосвязи кишечной микробиоты и нервной системы. Микробиота кишечника тесно общается с центральной нервной системой. Микробиота кишечника производит такие нейроактивные молекулы, как ацетилхолин и серотонин, дофамин, которые являются главными медиаторами сигналов в ЦНС, а также регулируют работу мозга через активацию иммунных сигнальных путей. Дополнительно, блуждающий нерв активно участвует в двунаправленных взаимодействиях между кишечной микробиотой и мозгом для поддержания гомеостаза как в головном мозге, так и в кишечнике.

Недавние исследования показали, что микробиом влияет на свойства и функцию микроглии. Микроглия защищает мозг от различных патологических состояний через активацию иммунного ответа, фагоцитоза и продукцию цитокинов. Кроме того, микроглия ответственна за формирование нейронных цепей, которые участвуют в развитии мозга. Различные дисбиотические состояния, в том числе вызванные приёмом антибиотиков приводят к угнетению созревания клеток микроглии. Незрелая микроглия приводит к нарушению иммунной активации.

Астроциты — самая многочисленная клеточная популяция в ЦНС, и они почти в пять раз превосходят численность нейронов. Подобно микроглии, астроциты выполняют несколько важных функций по поддержанию целостности ЦНС, включая контроль кровообращения в головном мозге, поддержание стабильности гематоэнцефалического барьера. Астроциты регулируют баланса ионов и оказывают влияние на передачу сигналов между нейронами. Чрезмерная активация астроцитов является пусковым механизмом в развитии дисфункции ЦНС и неврологических расстройств. Чрезмерная активация происходит под действием метаболитов микрофлоры.

Целостность гематоэнцефалического барьера регулируется также метаболитами микробиоты, которые опосредуют передачу большего количества микробных сигналов между осью кишечник-мозг.

Дисбиоз микробных видов в кишечнике может вызывать атипичные иммунные сигналы, дисбаланс в гомеостазе организме-хозяина и привести к прогрессированию заболеваний ЦНС. Например, рассматривается роль микробиоты в патогенезе рассеянного склероза-заболевания, характеризующимся демиелинизацией аксонов нервных клеток. При болезни Паркинсона, которая проявляется моторными симптомами, включая тремор, мышечную ригидность, медлительность движений и аномалию походки наблюдается накопление α-синуклеина в нейронах. Избыточное отложение α-синуклеина в нервной системе инициируется кишечной микрофлорой до того, как возникают симптомы поражения ЦНС, что связано с некоторыми специфическими пищеварительными симптомами (запоры и нарушение двигательной функции толстой кишки). Бактериальный состав кишечника влияет на болезнь Паркинсона: тяжесть симптомов, в том числе постуральная нестабильность и нарушение походки, связана с изменениями численности некоторых видов Enterobacteriaceae, уменьшение количества Lachnospiraceae приводит к более серьёзному ухудшению моторных и немоторных симптомов у пациентов с болезнью Паркинсона. Болезнь Альцгеймера — ещё одно нейродегенеративное заболевание, которое приводит к серьёзным нарушениям функции ЦНС — обучению, памяти и поведенческим реакциям. Болезнь Альцгеймера характеризуется отложением пептида амилоид-β (Aβ) снаружи и вокруг нейронов, вместе с накоплением белка тау внутри корковых нейронов. Перегрузка амилоидом и агрегация тау нарушают синаптическую передачу. Изменение состава и разнообразия микробиоты вносит определённый вклад в патогенез болезни Альцгеймера. Активированная микроглия способствует развитию заболевания, увеличивая отложение амилоида.

Ожирение и состав микробиоты

При ожирении и сахарном диабете наблюдаются изменения в составе микробиоты кишечника, в частности, снижение популяционного уровня сахаролитических бактероидов, влияющих на интенсивность метаболических процессов, а также увеличение доли бактерий класса Firmicutes (Esherichia coli, Clostridium coccoides, Clostridium leptum). Снижение содержания сахаролитических бактерий уменьшает выработку коротко-цепочных жирных кислот, обеспечивающих трофику и деление эпителия кишечника, его созревание, оказывающих антимикробное действие и регуляторное действие в отношении ионов и липидов.

Дополнительно при ожирении отмечается хроническое системное воспаление, сопровождающееся секрецией провоспалительных цитокинов (интерлейкины — ИЛ, С-реактивный белок, α-фактор некроза опухоли — α-ФНО и др.) в висцеральной жировой ткани. Нарушения в составе кишечной микрофлоры приводят к усилению эффекта системного воспаления за счёт увеличения концентрации бактериальных липополисахаридов, стимулирующих выработку провоспалительных компонентов.

Диагностика состояния кишечной микробиоты

Существует два метода определения микробиоты — стандартный анализ на дисбактериоз и оценка состава микробиоты методом масс-спектрометрии по крови (ГХ-МС). В основе методики масс-спектрометрии лежит определение присутствия микроорганизмов по их клеточным компонентам (высшие жирные кислоты, альдегиды, спирты и стерины). Методика разработана профессором Осиповым Г.А. Метод ГХ-МС позволяет одновременно измерять более сотни микробных маркёров непосредственно в образце, позволяющих сделать заключение о некультивируемых и труднокультивируемых патологических возбудителях. Метод универсален также в отношении грибов и вирусов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *