Научные исследования сна и сновидений
Наука сна: часть 1
В этом посте я поделюсь информацией о своём предмете обожания. О том, чем я могу заниматься в любое время, в любом месте и в любом количестве. О том, что я предпочла бы бриллиантам и ресторанам из списка Мишлен. Н-+да, конец этой шутки был бы более смешным, если бы заголовок не раскрыл подробности того, что я буду рассказывать о сне. Ну да ладно.
Сон, насколько необходимый, настолько и загадочный, до сих пор ставит учёных в тупик – а они исследуют его уже десятилетия (а спят люди уже многие тысячи лет). Что конкретно происходит во сне? Зачем мы спим? Можно ли перестать спать? Что тогда случится? Заинтересовались? Тогда читайте дальше, и вы узнаете, насколько близко мы подошли к ответам на эти вопросы.
1. Теоретические основы: что и как устроено в области дрёмы
Все слышали про фазу быстрого сна (REM-фазу): либо из-за её связи со снами, либо из-за её важности для человека, либо просто потому, что вам понравилась песня «Losing My Religion». Но сон – это нечто большее: он содержит ещё три других фазы с разными характеристиками и функциями (и с разными вероятностями того, что вы рассердитесь, когда вас разбудят на этом этапе).
1-я фаза сна, N1 – фаза дремоты, в которой вы переключаетесь между бодрствованием и сном. Ваши мускулы ещё не до конца расслаблены и вы можете испытать ощущение падения – внезапное сокращение мускулов, миоклонический рывок (некоторые учёные предположили, что оно может проистекать из мозга наших предков-приматов, и путать расслабление мускулов с падением с дерева). Кроме того, происходит изменение мозговых волн, синхронных электрических импульсов, появляющихся из-за общения друг с другом огромного количества нейронов (см. рис. 1 для визуализации всех возможных мозговых волн). В состоянии бодрствования ваш мозг выдаёт множество волн, называющихся бета и гамма. Они достаточно резко дёргаются и имеют высокую частоту, и либо связаны с концентрацией (бета), либо, как считается, играют роль в создании сознания (гамма). В этой, первой фазе сна, ваш мозг начинает выдавать вместо бета и гамма-волн более медленные и синхронные альфа-волны (их связывают с расслаблением и умиротворением), и даже ещё более медленные тета-волны (их связывают с глубоким расслаблением и дремотой) – то есть, замедляется. Эта фаза длится от 1 до 10 минут.
Рис. 1: краткое введение в волны, появляющиеся у вас в голове
2-я фаза сна, N2. В этой фазе ваше сознание уже отключилось. Пульс и дыхание замедляются, температура уменьшается, вы готовитесь к тому, чтобы войти в глубокий сон, тета-волны всё ещё ярко выражены. Эта фаза вместе с предыдущей составляет то, что называют «неглубоким сном». Большую часть ночи (порядка 45%) мы проводим в этой фазе. Из неглубокого сна просыпаться лучше всего, вы будете чувствовать себя не разбитым или дезориентированным, а освежившимся и готовым к новому дню.
3-я фаза сна, N3. Вот тут всё серьёзно: это фаза глубокого сна. Её также называют фазой медленных волн, поскольку – как вы догадались – мозговые волны замедляются и становятся крупнее. Теперь правят бал дельта-волны, самые медленные из всех, на которые способен ваш мозг. Вы не реагируете на окружающие звуки, вам сложно проснуться, и ваши мускулы полностью расслаблены. Эта фаза сна называется восстановительной, поскольку ваши ткани восстанавливаются, энергия возобновляется, почки очищают кровь – ну, вы поняли. Если вы проснётесь во время глубокого сна, то окажетесь в таком состоянии (научно доказанный факт):
REM-фаза + сонный паралич: сны, наверно, самые интересные особенности сна, в основном приходят на этом этапе, и бывают яркими и сложными. Определяющее свойство – случайное и быстрое движение глаз из стороны в сторону. Назначение этих движений пока ещё не полностью понятно (а что в нейробиологии полностью понятно?), среди теорий – сканирование тех сцен, что мы видим во сне, а также формирование памяти (поговорим об этих функциях сна позже). Ваше кровяное давление и дыхание поднимаются почти до уровня бодрствования, этот же уровень напоминают и мозговые волны – присутствует даже большое количество бета-волн! Из-за всех этих странностей REM-фаза заслужила название «парадоксального сна». Страшновато, но стоит знать, что ваши мускулы в этот момент полностью парализованы – нейротрансмиттеры GABA и глицин предотвращают поступление мозговых сигналов к мускулам и защищают вас от того, чтобы вы реагировали на сон и, возможно, навредили бы себе. Получается, что, по сути, вы просто лежите полностью парализованным, пока ваши глаза неконтролируемо мечутся туда и сюда. Прелестно. Учёные считают, что когда переход к REM-фазе и выход из неё не проходят гладко, это может привести к сонному параличу – пугающему состоянию, когда к вам вернулось сознание, но вы ещё не можете двигаться. В этом промежуточном состоянии между бодрствованием и яркими снами люди часто рассказывают о том, как видят всякие кошмары, которые обычно можно разделить на такие категории, как инкубы (человек ощущает давление на грудь и испытывает трудности с дыханием, и может воспринимать это так, что у него на груди сидит некий демон), незваные гости (человек ощущает нежелательное присутствие некоего страшного существа) и ощущение выхода из тела. Это объясняет множество рассказов о паранормальных явлениях и похищениях инопланетянами (прости, агент Малдер!) Примерно 7,6% от всех людей страдает сонным параличом, причём среди студентов эта доля довольно сильно увеличена, до 28%.
В течение средней ночи человек обычно проходит несколько циклов сна (каждый из которых длится около 90 минут), причём ближе к утру REM-фазы учащаются.
Краткий обзор происходящего ночью. Можно видеть, что в начале ночи преобладает фаза медленных волн, а во второй половине периода сна начинает преобладать REM-фаза.
2. Как мозг засыпает?
Невозможно определить точный момент засыпания. В один момент вы всё ещё раздумываете над тем тупым поступком, что сделали пять лет назад, а в другой вы уже скользите по направлению ко второй фазе сна. Так что происходит в мозге во время засыпания?
В глубине вашего мозга есть такая крохотная штучка, как супрахиазматическое ядро (СХЯ), управляющая нашим 24-часовым циклом сон-бодрствование. Оно получает напрямую от глаз информацию о количестве света в том месте, где вы находитесь. Оно использует эту информацию для обнуления ваших внутренних часов с целью соответствия нормальному циклу день-ночь. Внутренние часы соответственно регулируют множество функций тела – температуру, выход гормонов, и то, что интересует нас сейчас – сон и бодрствование. Интересно, что даже при полном отсутствии света наши внутренние часы работают примерно с 24-часовым ритмом. Было обнаружено, что это возможно благодаря циклической активности определённых генов (сообразно названных «часовыми генами»). Эти гены выдают разные уровни различных «часовых белков» в зависимости от времени дня – а эти белки уже регулируют дневные ритмы (температуру тела, выработку мелатонина, концентрацию внимания и т.п.)
СХЯ сложным образом связано с – приготовьтесь к очередному длинному названию — вентролатеральным ядром зрительного бугра (ВЛЯ) – структурой, остающейся активной во время сна. Считается, что эти связи активируют ВЛЯ и способствуют началу сна – поскольку во время активации нейронов ВЛЯ они выпускают тормозящие химические вещества (GABA и галанин), которые в свою очередь подавляют нашу пробуждающую систему. Вот так, через длинную цепь инстанций, выключатель поворачивается и ваше бодрствующее состояния медленно нисходит до нуля. Нейроны ВЛЯ также могут быть активированы химикатом под названием аденозин. Аденозин постепенно накапливается в течение дня в результате распада гликогена, хранящего энергию в теле, и после того, как его наберётся достаточно, он начинает повышать усталость и подталкивать вас к отдыху. Это называется гомеостатической регуляцией, во время которой мозг пытается балансировать усталость отдыхом.
Краткий обзор цепочки инстанций
Ещё одно химическое соединение, имеющее отношение к сну, можно найти в качестве БАДа в супермаркете [в США / прим. перев.]: мелатонин. Он производится шишковидным телом, и его производство, как и множества других веществ, регулируется циркадными ритмами. Когда солнце садится, СХЯ даёт шишковидному телу команду начать производство мелатонина (чьё наличие в организме в течение дня едва прослеживается), он попадает в кровоток и вызывает сон. Недавно учёные предупреждали нас о вреде использования смартфонов, телевизоров и других излучающих свет устройств перед сном, поскольку они нарушают наши уровни мелатонина. В свете электронных устройств концентрация голубого компонента гораздо сильнее, чем в естественном, и этот предательский голубой свет подавляет выработку мелатонина сильнее, чем свет любой другой частоты. Он сбивает с толку цикл сон-бодрствование и может привести к ухудшению качества и количества сна, поскольку мозг начинает путаться с тем, какое сейчас время суток. Поэтому сделайте себе одолжение и почитайте перед сном книжку. Или займитесь медитацией. Или сексом. Чем угодно, без голубого света.
Сравнение пониженной выработки мелатонина из-за яркого света (кружки) и повышенной выработки при ношении очков, блокирующих голубой свет (белые треугольники), а также нормальной выработки мелатонина при тусклом свете (чёрные треугольники)
3. Почему мы спим, и чем важен сон?
Очень хороший вопрос. К сожалению, определённого ответа на него нет. Как сказал Уильям Демент, основатель Стэнфордского центра исследований сна: «Насколько я знаю, единственная очень, очень веская причина, по которой нам нужно спать, заключается в том, что мы становимся сонными». Поэтому давайте просто посмотрим на то, что нам уже известно (кроме этой крупицы мудрости).
Память
О существовании романтических отношений между сном и консолидацией памяти (то есть, её стабилизацией) учёные подозревали давно, и в последние десятилетия, если не столетия, было проведено множество исследований, подкрепивших это мнение (но ни одно из них не было полностью убедительным). Есть различие между двумя типами памяти: декларативной (об информации, основанной на фактах, отвечающей на вопрос «что?») и процедурной (отвечающей на вопрос «как?», например, мускульная память об управлении велосипедом или игре на гитаре). Было бы очень удобно, если бы у нас было чёткое различие вроде «сон с медленными волнами отвечает за это, а REM-фаза отвечает за то», но, к сожалению, в реальности всё перемешано.
Обычно сон помогает работе памяти: люди, спавшие после того, как что-то выучат, обычно вспоминают новую информацию лучше, чем те, кто не спал после обучения. Изучение списков слов, сложных движений пальцами или даже распутывание сложных спрятанных закономерностей – всё это выигрывало от наличия сна после процесса обучения.
Есть теории, что сон с медленными волнами (СМВ), преобладающий в первую часть ночи, особенно помогает консолидировать декларативную память. Считается, что стабилизация новоприобретённых воспоминаний происходит через их реактивацию в гиппокампе, нашем центре памяти, во время сна. «Заново проигрывая» воспоминания, мозг стабилизирует их следы, благодаря чему вероятность их утери уменьшается. В одном исследовании обнаружили, что если изучить что-то новое, вдыхая запах розы, а затем этот запах подать спящему во время СМВ, активность его гиппокампа увеличивается, а память на следующий день закрепляется сильнее. Так что:
REM-фазу, с другой стороны, связали с процедурной памятью, чья консолидация не зависит от гиппокампа (а больше зависит от повторения команд на движение в частях мозга, занятых управлением мускулами – мозжечке, базальных ганглиях и моторной коре). По поводу точных механизмов консолидации такого типа памяти пока мало что известно, поэтому этот параграф будет коротким. Однако, существуют исследования, не согласные с таким чётким разделением (научно говоря, возражающие гипотезе дуального процесса). К примеру, было показано, что СМВ-сон может помочь консолидировать двигательную (= процедурную) память, а REM-фаза играет определённую роль в стабилизации воспоминаний о событиях и фактах. Судя по всему, не такое уж и чёткое разделение обязанностей. Это говорит о том, что обе фазы важны для обоих типов памяти (такая теория называется «последовательной гипотезой»): они не соревнуются друг с другом, а дополняют друг друга. Просто так получается, что одна фаза (СМВ) может вносить больший вклад в один тип памяти (декларативный), и наоборот.
Но на этом, конечно, история не заканчивается. Есть – внезапно! – ещё одна теория, пытающаяся описать консолидацию памяти. Она называется «синаптическим гомеостазом» и, по сути, утверждает, что в то время, когда вы бодрствуете и приобретаете новые воспоминания и опыт, связи между клетками вашего мозга (синапсы) усиливаются (и создаются новые), и что когда вы спите, мозг пытается низвести это огромное дневное увеличение до разумного уровня, устранив ненужные синапсы. Так что, можно сказать, что мы спим, чтобы забыть – и поднять уровень сигнала над уровнем шума, начав новый день освежёнными и готовыми к новому обучению. Ненужные связи и случайные воспоминания удаляются, а важные усиливаются через повторение. Недавнее исследование нашло прямое визуальное доказательство этой гипотезы: исследователи, использовав микроскопию высокого разрешения, сначала определили размеры и форму 6920 синапсов, а потом показали, что после нескольких часов сна 80% синапсов уменьшились примерно на 18%.
Крупные синапсы бодрствующей мыши и сжавшиеся синапсы немного поспавшей мыши.
Конечно же, правильного ответа не существует – истина находится где-то посередине, и все эти теории объясняют лишь часть происходящего. Но теперь вы подумаете дважды перед тем, как решить учиться всю ночь перед экзаменом; напрягаясь и закидываясь энергетиком, вы не заставите мозг запомнить информацию лучше – но это могут сделать несколько часов сна.
Ведение домашнего хозяйства
Ещё одна предполагаемая функция сна — ведение домашнего хозяйства. Пока вы спите, мозг натягивает форму уборщика и отправляется на очистку всего накопившегося там во время дневных размышлений мусора. В нескольких исследованиях на мышах исследователи обнаружили систему, устраняющую отходы работы мозга из него во время сна. За это отвечает мозговой аналог лимфатической системы, сеть крохотных канальцев, вымывающих побочные отходы при помощи спинномозговой жидкости. Учёные назвали его «глимфатической системой», потому что она работает, как лимфатическая система, но при помощи вспомогательных клеток мозга, глий. Когда мыши заснули, эта система включилась на полную катушку (во время бодрствования её активность составляет всего 5% от потока во сне!) и клетки мозга даже немного сжались в размерах, чтобы место вокруг них легче было очищать. Удаляемые побочные продукты деятельности включают в себя такие белки, как бета-амилоиды – злодеев, стоящих за болезнью Альцгеймера (во время сна их в два раза быстрее вымывает, чем во время бодрствования!) – и другие вещества, связанные с нейродегеративными заболеваниями. Так что если вдруг захотите всю ночь проработать, задумайтесь обо всех этих токсинах, накапливающихся в вашем мозге, и вместо ночи работы поспите хотя бы пару часиков.
В общем, хотя пока ещё не полностью понятно, почему мы проводим треть нашей жизни во сне, у нас уже есть довольно неплохие ориентиры.
Во второй части статьи я раскрою удивительную информацию о снах, о том, что может нарушить сон, и дам немного советов по поводу оптимальной организации сна. Не переключайтесь.
Научные исследования сна и сновидений
Научные исследования сна и сновидений
Вопреки извечному человеческому очарованию снами, они не рассматривались в качестве предмета широких научных исследований вплоть до второй половины XX века. Одной из причин этого было то, что научному интересу к процессам сна пришлось ждать возникновения экспериментальной психологии в девятнадцатом веке и развития ее в двадцатом. Другой причиной оказался технический фактор: вплоть до недавнего времени инструментарий для исследования снов просто не был разработан. Сложные и чувствительные электронные приборы, используемые в современных исследованиях сна и снов, занимаются измерением, проверкой и записью тончайших нюансов электропотенциала и всех видов биологической активности. До их изобретения у ученых не было возможности отслеживать изменения биоэлектрического потенциала, происходящие в мозгу спящего, сопровождающие (и, может быть, порождающие) события, переживаемые человеком во сне. Некоторая историческая информация может помочь читателю в понимании того, каким же образом свершилась эта техническая революция.
Начало эпохи электричества восходит к одному из самых знаменитых за всю историю науки экспериментов, проведенному в XVIII веке итальянским физиологом Луиджи Гальвани, — эксперименту, в ходе которого было открыто «животное электричество». Гальвани был крайне удивлен, что когда он прикасался к отсеченной лягушечьей лапке двумя кусочками различных металлов, то та начинала дергаться, как живая. Кроме того, когда Гальвани, подсоединив к ней провода, сделал примитивное устройство для определение электропотенциала, он обнаружил, что и в самом деле вырабатывается электричество. На этом Гальвани и построил свою теорию о том, что нервы ноги служат источником электричества, а затем обобщил предположение, заключив, что все ткани организма продуцируют «животное электричество» как результат процессов жизнедеятельности живых существ.
Через некоторое время после этого открытия другой итальянец, физик Алессандро Вольта, доказал ошибочность теории Гальвани в отношении источника электричества, приводившего в движение лапку лягушки. Вольта показал, что электрический потенциал (названный в честь ученого «voltage») происходил из сочетания медной и стальной проволоки, контактировавшей с влажной тканью, — другими словами, из примитивной батареи, достаточно мощной для того, чтобы стимулировать рефлекторную мышечную активность. Позже Гальвани все же доказал, что, как и было открыто, активность мышечных и нервных клеток приводит к микроскопическим изменениям электрического заряда — к «животному электричеству»!
К середине XIX века научное понимание электричества достигло уже достаточного уровня, чтобы стало возможным качественное измерение электрической активности нейронов на любом участке нервной системы. Когда одно окончание периферическою нерва подвергалось активной стимуляции, на другое его окончание постоянно передавался электрический импульс. Ричард Кейтон из Ливерпульского университета заключил, что это и есть способ передачи импульсов по периферической нервной системе (к которой принадлежат органы чувств и двигательные нервы, расположенные вне центральной нервной системы), а также, возможно, и в центральной нервной системе (головном и спинном мозге). Таким образом, если в результате измерения электропотенциала мозга отмечаются какие-либо изменения, то они должны быть следствием сенсорной стимуляции мозга.
Начало эпохи электричества восходит к одному из самых знаменитых за всю историю науки экспериментов, проведенному в XVIII веке итальянским физиологом Луиджи Гальвани, — эксперименту, в ходе которого было открыто «животное электричество». Гальвани был крайне удивлен, что когда он прикасался к отсеченной лягушечьей лапке двумя кусочками различных металлов, то та начинала дергаться, как живая. Кроме того, когда Гальвани, подсоединив к ней провода, сделал примитивное устройство для определение электропотенциала, он обнаружил, что и в самом деле вырабатывается электричество. На этом Гальвани и построил свою теорию о том, что нервы ноги служат источником электричества, а затем обобщил предположение, заключив, что все ткани организма продуцируют «животное электричество» как результат процессов жизнедеятельности живых существ.
Через некоторое время после этого открытия другой итальянец, физик Алессандро Вольта, доказал ошибочность теории Гальвани в отношении источника электричества, приводившего в движение лапку лягушки. Вольта показал, что электрический потенциал (названный в честь ученого «voltage») происходил из сочетания медной и стальной проволоки, контактировавшей с влажной тканью, — другими словами, из примитивной батареи, достаточно мощной для того, чтобы стимулировать рефлекторную мышечную активность. Позже Гальвани все же доказал, что, как и было открыто, активность мышечных и нервных клеток приводит к микроскопическим изменениям электрического заряда — к «животному электричеству»!
К середине XIX века научное понимание электричества достигло уже достаточного уровня, чтобы стало возможным качественное измерение электрической активности нейронов на любом участке нервной системы. Когда одно окончание периферическою нерва подвергалось активной стимуляции, на другое его окончание постоянно передавался электрический импульс. Ричард Кейтон из Ливерпульского университета заключил, что это и есть способ передачи импульсов по периферической нервной системе (к которой принадлежат органы чувств и двигательные нервы, расположенные вне центральной нервной системы), а также, возможно, и в центральной нервной системе (головном и спинном мозге). Таким образом, если в результате измерения электропотенциала мозга отмечаются какие-либо изменения, то они должны быть следствием сенсорной стимуляции мозга.
В то же время мозг рассматривался всего лишь как нейронная сеть — орган, всецело зависящий от внешних стимулов и сам по себе ничего не делающий; иначе говоря, не способный давать что-либо, кроме ответов на заданные вопросы. И если такой мозг не был tabularasa, то лишь потому, что в нем оставляли след импульсы, поступавшие из органов чувств. В 1875 году Кейтон попытался измерить предполагаемую реакцию мозга на сенсорную стимуляцию. Подвергнув собаку анестезии, он вскрыл ей черепную коробку и обнаружил поверхность полушарии ее мозга. Когда Кейтон подсоединил электроды к коре головною мозга собаки, у нее случился шок, и это не был электрошок. Собака была под анестезией, следовательно, возможности получать какую-либо сенсорную информацию у нее не было, и Кейтон не ожидал никаких физиологических изменений в ее мозговой активности. По, вопреки ожидаемой стабильности потенциала, в мозгу собаки происходили непрерывные изменения, быстрые колебания напряжения. Произошедшее послужило явным доказательством того, что мозг не является только лишь аппаратом реакций на стимулы: нейтральным его состоянием оказался не полный покой, а активность. По крайней мере, это можно было утверждать о мозге «друга человека».
Чтобы сделать записи мозговой активности добровольцев из человеческого племени, пришлось ждать изобретения альтернативной экспериментальной техники, поскольку иначе потребовалось бы вскрывать слишком много черепных коробок. Дело в том, что биоэлектрический потенциал мозга очень слаб — порядка милливольта и меньше (милливольт — одна тысячная вольта; для сравнения: напряжение в обычной пальчиковой батарейке равняется полутора тысячам милливольт). Очевидно, электропотенциал мозга достаточно слаб даже при измерении его непосредственно на поверхности мозга, и во много раз слабее, если ему приходится преодолевать сопротивление оболочек, особенно костной. Даже самые чувствительные приборы, применявшиеся в XIX веке, не были достаточно чувствительны, чтобы воспринимать и записывать сигналы, амплитуда которых не превышала нескольких микровольт (миллионные доли вольта). Изобретение электронной лампы-усилителя в начале XX века обеспечило возможность ведения измерений с необходимой точностью, а также обусловило появление высококачественной звукозаписи, радио и телевидения.
Этим не преминул воспользоваться Ханс Бергер, немецкий нейропсихиатр, получивший возможность при помощи новых приборов записывать электрическую активность человеческого мозга, не нарушая целостности черепов добровольцев. Каково же было его удивление, когда результаты оказались не менее сенсационными, чем открытие, сделанное Кейтоном за 50 лет до него. В опытах с человеком Бергер ожидал получить такие же беспорядочные колебания напряжения, как и при проведении опытов с животными: кроликами, кошками, собаками, обезьянами. Но колебания напряжения у представителей человеческой расы оказались неожиданно ритмичными. Бергер назвал записи мозговых волн электроэнцефалограммой (ЭЭГ) и отметил, что, как только субъект был в состоянии лечь, закрыть глаза и расслабиться, колебания его мозговых волн становились регулярными, с периодичностью повторения примерно 10 раз в секунду. Это и был знаменитый «альфа-ритм» (названный так его первооткрывателем), свидетельствующий о состоянии расслабления (равно как и о погружении в медитацию). Бергер обнаружил, что частота (количество пиков в секунду) колеблется между 8-ю и 12-ю, и альфа-ритм исчезает, как только из внешнего мира поступает неожиданный стимул (например, звук щелчка пальцами). Наконец-то у науки появилось окно, открытие которого обещало пролить свет на природу сознания.
Занятно, что наблюдения, сделанные Бергером, поначалу были восприняты в научных кругах с изрядной долей скепсиса. Большинство электрофизиологов сочли обнаруженный Бергером альфа-ритм результатом определенного рода ошибки в измерениях, а не следствием естественной активности мозга. Эксперты двояко обосновывали свои сомнения: во-первых, они были уверены, что единственный тип электрической активности мозга — это «пиковые [spike] всплески потенциала», связанные с работой мозговых клеток; во-вторых, в альфа-ритме, о существовании которого заявил Бергер, наблюдалась регулярность такой степени, которую в живой природе встретить никто не ожидал; так что полученный результат проще было приписать сбоям в работе аппаратуры. Лишь после повторения этого опыта исследователями из Кембриджского университета, основополагающее открытие Бергера было наконец принято, и тем самым положено начало энцефалографии как науки. Среди исследований связи между состоянием сознания и состоянием мозга (в которых Бергер также был пионером) была и первая электроэнцефалограмма спящего человека.
Исследования изменений ЭЭГ в процессе сна, впервые выявленных Бергером, были продолжены в 30-е годы в Гарвардском университете. 1 На основе записей ЭЭГ бодрствования и сна пяти уровней там пришли к заключению, что сновидения имеют место во время более поверхностного сна. В подобной же серии исследовании в Чикагском университете изучалась разница между изменениями умственной активности у бодрствующего и у спящего субъекта. Был сделан вывод, что в фазе глубокого сна сны снятся очень редко. 2 Эти исследования позволили предположить, что изучение сновидения могло бы стать более объективным и научным, если бы существовали какие-то способы удостовериться, видит данный человек сны, или нет — и если видит, то когда. Но прежде чем ученые реализовали эту возможность, прошло несколько десятилетий.
В конце 40-х было обнаружено, что стимуляция нервной структуры ствола мозга (основания мозга), называемой ретикулярной формацией, ведет к активизации коры больших полушарий. Стимуляция ретикулярной формации у спящей кошки, к примеру, приводила к пробуждению, а разрушение приводило, наоборот, к состоянию перманентной комы. А коль скоро главным источником активизации ретикулярной формации являются сенсорные сигналы, была предложена теория, согласно которой сон может порождать процессы торможения в ретикулярной системе. Так что погружение в сон может зависеть от снижения ретикулярной активности вследствие уменьшения количества поступающих сенсорных сигналов.
Отношение к засыпанию как к пассивному процессу, по всей видимости, заслуживало внимания. И в самом деле: разве в темной, тихой комнате заснуть не проще, чем в шумной и ярко освещенной?! Но теория засыпания как всего лишь пассивного следствия снижения количества информации, воспринимаемой органами чувств, имела явные недостатки. В конце концов, как бы тиха и темна ни была комната, если вы не хотите спать, вы не уснете. С другой стороны, если вы не выспались и очень устали, вы будете в состоянии уснуть где угодно, даже стоя на рок-концерте! Таким образом, совершенно очевидно, что засыпание не могло быть объяснено только этой теорией. Поэтому обнаружение через некоторое время в основании мозга, лобных долях и других его частях активных гипногенных центров, электро— или нейрохимическая стимуляция которых вела к засыпанию, не было неожиданностью.
К концу 40-х годов это было существенным достижением в научном изучении биологии сна. Сон рассматривался как конец континуума бодрствования. В другом конце этого континуума было состояние полного бодрствования, поделенное на промежуточные стадии: от расслабления, через состояние внимания и до состояния полной умственной подвижности, достигающей крайней степени в маниях или в панике. В каком месте этой шкалы вы находитесь, зависит от состояния вашей ретикулярной формации. При таком подходе сон становится банальностью, и степень погружения в него определялась по шкале бодрствования. Сновидения, отмечавшиеся чаще всего во время неглубокого сна, выглядели как занятные отклонения в сторону состояния частичного бодрствования при частичном функционировании аппарата мышления.
С течением времени эти взгляды были вытеснены новыми, возникшими в результате важных событий 50-х годов.
Читайте также
2.16.5. НАУЧНЫЕ СПЕКУЛЯЦИИ
2.16.5. НАУЧНЫЕ СПЕКУЛЯЦИИ Плоха та наука, которая создается под красивую и простую идею. К сожалению, природа бывает сложнее и не соответствует идее. Это часто приводит к научным натяжкам, спекуляциям и подгонке
Научные степени
Научные степени Многие целители, эзотерики, гуру, духовные учителя изо всех сил стараются получить научную степень, некоторые из них становятся кандидатами или даже докторами наук, присваивают себе степень Ph., D. Но очень часто это происходит за пределами официальной
Научные традиции
Научные традиции Перинатальная психология первоначально появилась в рамках психоаналитических моделей Г. Х. Грабера – ученика З. Фрейда, в рамках психологии развития Р. Шиндлера и эмбриологии Э. Блехшмидта. В начале XX в. З. Фрейд обращал внимание на события периода
1.2. Естественно-научные основания
1.2. Естественно-научные основания Для создания своей теории Фрейду потребовалась смелость мышления. Интуитивно, но в полном соответствии с господствовавшим тогда естественно-научным мировоззрением и представлениями классической физики, Фрейд дал объяснение (Freud, 1895)
12. ОБЩАЯ ХАРАКТЕРИСТИКА МЕТОДОВ ИССЛЕДОВАНИЯ В ПСИХОЛОГИИ. ЭТАПЫ ПСИХОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ
12. ОБЩАЯ ХАРАКТЕРИСТИКА МЕТОДОВ ИССЛЕДОВАНИЯ В ПСИХОЛОГИИ. ЭТАПЫ ПСИХОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ Методы психологии – основные пути и приемы научного показания психических явлений и их закономерностей.В психологии принято выделять четыре группы методов изучения
2.4. Научные приметы
2.4. Научные приметы Хочу предупредить вас, дорогой мой читатель, что это приметы, а не теория, хотя получены они научным путем, т. е. опираются на конкретные наблюдения и статистически достоверны. Как и всякие приметы, они не всегда сбываются. Но научные приметы нередко
Глава 1. Мир осознанных сновидений Ч удеса осознанных сновидений
Глава 1. Мир осознанных сновидений Ч удеса осознанных сновидений Я понял, что сплю. Я поднял руки и стал подниматься (точнее, меня потянуло вверх). Я вознесся к черным небесам, которые постепенно становились сине-фиолетовыми, потом – пурпурными, лиловыми, белыми, а затем
Научные определения конфликтов
Научные определения конфликтов Выше уже упоминались неудачные попытки западных ученых упорядочить разнообразие определения конфликта. И это действительно непросто, ведь, как пишет Ф. Е. Василюк, «если задаться целью найти дефиницию, которая не противоречила бы ни
НАУЧНЫЕ ЗАНЯТИЯ
НАУЧНЫЕ ЗАНЯТИЯ Уже в юности интересы Стриндберга были весьма многообразны, и особую склонность он питал к науке. Поэтому то, что научные занятия со временем занимают все большее место в его жизни — а в течение ряда лет (примерно 1893–1897) поглощают его почти целиком, — не
Глава 4. Исследование мира сновидений: Осознанное сновидение в лаборатории. Картография мира сновидений
Глава 4. Исследование мира сновидений: Осознанное сновидение в лаборатории. Картография мира сновидений Возможная связь между миром физическим и миром сновидений всегда волновала человечество. Об этом свидетельствует история, насчитывающая не одно тысячелетие. Однако