Курант роббинс что такое математика
Курант роббинс что такое математика
Physics.Math.Code запись закреплена
Что такое математика? [2015] Курант, Роббинс
Книга написана крупным математиком Рихардом Курантом в соавторстве с Гербертом Роббинсом. Она призвана сократить разрыв между математикой, которая преподается в школе, и наиболее живыми и важными для естествознания и техники разделами современной математической науки. Начиная с элементарных понятий, читатель движется к важным областям современной науки. Книга написана доступным языком и является классикой популярного жанра в математике. Книга предназначена для школьников, студентов, преподавателей, а также для всех интересующихся развитием математики и ее структурой. Предыдущее издание вышло в 2013 г.
Уравнения с частными производными [1964] Курант
Настоящий том посвящен теории дифференциальных уравнений с частными производными, в особенности тем разделам этой широкой области науки, которые связаны с физическими и механическими понятиями. Но даже при таком ограничении на отбор материала достичь полноты изложения просто невозможно, поэтому содержание тома в известной степени определяется моими личными вкусами и моим опытом. Чтобы сделать этот важный раздел математического анализа более доступным для читателя, я постоянно подчеркивал основные понятия и методы, стараясь не превратить книгу в собрание теорем и фактов. Я всюду стремился вести читателя от элементарных фактов к ключевым вопросам, находящимся на переднем крае современных научных исследований. Предлагаемая книга, безусловно, является неровной по стилю, полноте и степени трудности. Однако я надеюсь, что она будет полезна для всех изучающих математику, независимо от того, являются ли они начинающими, студентами, математиками, специалистами в области других точных наук или инженерами. Возможно, что наличие в книге частей, написанных на разных уровнях, сделает её более доступной, так как начальное её чтение не требует больших математических знаний.
Методы математической физики [2 тома] [1933/1945] Курант, Гильберт
В первом томе (1933 г.) содержатся прекрасные образы применения алгебраических, геометрических и вариационных методов к разрешению фундаментальных проблем анализа. Второй том (1945 г.) содержит систематическую теорию дифференциальных уравнений с частными производными, рассматриваемую с точки зрения математической физики. Перевод с немецкого З. Либина, Б. Лившица, Ю. Рабиновича.
Курс дифференциального и интегрального исчисления [2 тома][1967/1970] Курант
Книга представляет собой мастерски написанный крупным немецким математиком курс математического анализа. Настоящее издание первого тома содержит дифференциальное и интегральное исчисление функций одного переменного, очерк теории функций нескольких переменных, дифференциальные уравнения простейших типов колебаний.
Первый и второй том книги Р. Куранта «Курс Дифференциального исчисления» представляют собой мастерски написанный крупным математиком курс математического анализа, адресуемый автором «будущим учителям и научным работникам в области математики, физики и других естественных наук, а также инженерам» Первый том был впервые издан на русском языке в 1931 г. Последнее. 4-е издание первого тома, переработанное и значительно дополненное, вышло в конце 1967 г.
Курант роббинс что такое математика
Physics.Math.Code запись закреплена
[1] Что такое математика [2010] Курант Р. Роббинс Г.
[2] Дискретный анализ [2008] Романовский
Пособие написано по материалам вводного лекционного курса, который автор читает на математико-механическом факультете Санкт-Петербургского государственного университета студентам, специализирующимся по прикладной математике и информатике. Особое внимание уделяется связям между понятиями дискретного анализа, возникающими в разных разделах математики и современной информатики. В это издание включено много новых материалов, в связи с чем изменилась структура книги: появились новые главы и параграфы. Увеличено число упражнений. Текст дополнен алфавитным указателем и библиографическими рекомендациями.
[3] Основы высшей математики и математической статистики [2008] Павлушков
Курс высшей математики на фармацевтическом факультете состоит из общего курса и специальных разделов. В общий курс входят: основные элементарные функции, дифференциальное исчисление функции одной переменной, элементы дифференциального исчисления функций нескольких переменных, интегральное исчисление функции одной переменной, дифференциальные уравнения первого и второго порядка, основы теории вероятностей и математической статистики. Данный учебник содержит подробные пояснения теоретического материала, а также большое количество примеров и задач. В нем указаны методы решения типовых задач и приведены примеры. По каждому разделу учебник содержит большое количество задач для самостоятельного решения и может быть использован как задачник по общему курсу высшей математики для фармацевтических факультетов. Данным учебником с успехом могут пользоваться также и студенты заочной формы обучения фармацевтических ВУЗов.
[4] Задачи по теории множеств, математической логике и теории алгоритмов [2004] Лавров
В книге в форме задач систематически изложены основы теории множеств, математической логики и теории алгоритмов. Книга предназначена для активного изучения математической логики и смежных с ней наук. Состоит из трех частей: «Теория множеств», «Математическая логика» и «Теория алгоритмов». Задачи снабжены указаниями и ответами. Все необходимые определения сформулированы в кратких теоретических введениях к каждому параграфу. Сборник может быть использован как учебное пособие для математических факультетов университетов, педагогических институтов, а также в технических вузах при изучении кибернетики и информатики. Для математиков-алгебраистов, логиков и кибернетиков.
[5] Элементарная математика [1974] Сканави
[6] Алгебра и начала математического анализа [2018] Колмогоров
Учебное пособие написано на высоком научном уровне, основные теоретические положения иллюстрируются конкретными примерами. Система упражнений в нём представлена задачами двух уровней сложности как к каждому параграфу, так и к каждой главе. Упражнения для повторения курса в главе «Задачи на повторение» и задачи повышенной трудности в заключительной главе содержат богатый материал для подготовки к ЕГЭ. Исторические справки познакомят учащихся с историей развития математики. Для подготовки к контрольной работе в конце каждой главы приведены вопросы и задачи на повторение основного материала. Ответы на вопросы и примеры решения таких задач можно найти в тексте соответствующих пунктов. Дополнительный материал теоретического характера содержится в некоторых пунктах учебника, он выделен специальными значками.
[7] Высшая геометрия, Классический университетский учебник [2004] Ефимов
Перед вами прекрасная книга, в которой с редкой ясностью и яркостью излагаются основы геометрии — евклидовой и неевклидовой, проективной геометрии, геометрии постоянной кривизны. Эта книга — классический учебник, выдержавший семь изданий, отличается методически продуманным и умело распределенным материалом и остается современной и своевременной. Для студентов и аспирантов всех математических специальностей, физиков и информатиков, лекторов геометрических курсов, математиков-исследователей.
[8] Введение в теорию внешних форм [1977] Ефимов
Книга представляет собой краткое введение в теорию внешних форм. Она состоит из трех глав: 1) Алгебра внешних форм. 2) Внешнее дифференцирование. 3) Интегрирование форм по цепям. Автор ограничивается рассмотрением внешних форм и цепей в конечномерном евклидовом пространстве. Но на этом материале дается достаточное представление об отношениях сопряженности между пространствами форм и цепей и об основных парах сопряженных операторов. Книжка написана весьма просто и понятно. Выкладки и рассуждения везде проведены без существенных пропусков. Настоящая книга может быть полезной студентам математических специальностей университетов, которые слушают курсы анализа и геометрии. Возможно также, что его воспользуются механики и физики, заинтересованные в методах тензорного исчисления.
[9] Риманова геометрия и тензорный анализ [1977] Рашевский
По своему характеру эта книга гораздо ближе к учебнику, чем к монографии, предназначенной для специалистов. Это сказывается прежде всего в выборе материала: автор стремился дать лишь действительно основное и важнейшее в рассматриваемой области, но зато в развернутом изложении со всесторонним освещением предмета.
По характеру изложения книга должна быть вполне доступна студенту III курса университета. Другой характерной чертой книги являются выходы из области тензорного анализа и римановой геометрии в механику и физику; эти выходы автор старался указывать везде, где это было возможно. Как известно, наиболее замечательные приложения тензорный анализ и риманова геометрия имеют в области теории относительности; ей посвящены IV и X главы книги. Особую роль играет глава I; она носит как бы пропедевтический характер и развивает тензорные методы с их приложениями к механике и физике в простейшем (даже тривиальном) случае обычного пространства в прямоугольных декартовых координатах. Эта глава по уровню изложения должна быть доступна инженеру и студенту втуза, которые пожелали бы познакомиться с элементами тензорного анализа в минимальном объеме, необходимом для технических приложений.
В настоящее время нельзя пройти мимо псевдоевклидовых и псевдоримановых пространств (кстати, необходимых для теории относительности) и пространств аффинной связности. Эти вопросы нашли место в книге. На ряде примеров даны также основные идеи теории геометрических объектов, в том числе теория спиноров в четырехмерном пространстве. Изложение дополнено также рядом частных вопросов, но зато фундаментального значения (как, например, теория кривых и гиперповерхностей в римановом пространстве и др.).
Имея в виду значительный объем книги, автор отметил ряд параграфов звездочками, что означает возможность пропустить их без ущерба для понимания дальнейшего. Некоторые указания в этом направлении сделаны и в тексте. При всем том чисто факультативного материала книга не содержит, и почти все в ней изложенное в том или ином отношении имеет в рассматриваемой области важное значение.
[10] Курс анализа [1936] Эрмит Шарль
Курс этот издан не был, но сохранился в литографированном виде, составленном Андуайе; самое имя составителя ручается за точность изложения содержания; впрочем последнее, четвертое издание, было просмотрено самим Эрмитом. А. Н. Коркин был по своим воззрениям противником Вейерштрасса, но он высоко ставил курс Эрмита, рекомендовал его изучение магистрантам и всем своим ученикам.
Можно лишь приветствовать издание этого курса, который не должен служить учебником при первоначальном изучении Анализа, а должен служить пособием для тех, кто желает глубже изучить этот предмет и вникнуть в дальнейшее развитие этого предмета за последние сорок или пятьдесят лет.
Курант роббинс что такое математика
Physics.Math.Code запись закреплена
[1] Что такое математика [2010] Курант Р. Роббинс Г.
[2] Дискретный анализ [2008] Романовский
Пособие написано по материалам вводного лекционного курса, который автор читает на математико-механическом факультете Санкт-Петербургского государственного университета студентам, специализирующимся по прикладной математике и информатике. Особое внимание уделяется связям между понятиями дискретного анализа, возникающими в разных разделах математики и современной информатики. В это издание включено много новых материалов, в связи с чем изменилась структура книги: появились новые главы и параграфы. Увеличено число упражнений. Текст дополнен алфавитным указателем и библиографическими рекомендациями.
[3] Основы высшей математики и математической статистики [2008] Павлушков
Курс высшей математики на фармацевтическом факультете состоит из общего курса и специальных разделов. В общий курс входят: основные элементарные функции, дифференциальное исчисление функции одной переменной, элементы дифференциального исчисления функций нескольких переменных, интегральное исчисление функции одной переменной, дифференциальные уравнения первого и второго порядка, основы теории вероятностей и математической статистики. Данный учебник содержит подробные пояснения теоретического материала, а также большое количество примеров и задач. В нем указаны методы решения типовых задач и приведены примеры. По каждому разделу учебник содержит большое количество задач для самостоятельного решения и может быть использован как задачник по общему курсу высшей математики для фармацевтических факультетов. Данным учебником с успехом могут пользоваться также и студенты заочной формы обучения фармацевтических ВУЗов.
[4] Задачи по теории множеств, математической логике и теории алгоритмов [2004] Лавров
В книге в форме задач систематически изложены основы теории множеств, математической логики и теории алгоритмов. Книга предназначена для активного изучения математической логики и смежных с ней наук. Состоит из трех частей: «Теория множеств», «Математическая логика» и «Теория алгоритмов». Задачи снабжены указаниями и ответами. Все необходимые определения сформулированы в кратких теоретических введениях к каждому параграфу. Сборник может быть использован как учебное пособие для математических факультетов университетов, педагогических институтов, а также в технических вузах при изучении кибернетики и информатики. Для математиков-алгебраистов, логиков и кибернетиков.
[5] Элементарная математика [1974] Сканави
[6] Алгебра и начала математического анализа [2018] Колмогоров
Учебное пособие написано на высоком научном уровне, основные теоретические положения иллюстрируются конкретными примерами. Система упражнений в нём представлена задачами двух уровней сложности как к каждому параграфу, так и к каждой главе. Упражнения для повторения курса в главе «Задачи на повторение» и задачи повышенной трудности в заключительной главе содержат богатый материал для подготовки к ЕГЭ. Исторические справки познакомят учащихся с историей развития математики. Для подготовки к контрольной работе в конце каждой главы приведены вопросы и задачи на повторение основного материала. Ответы на вопросы и примеры решения таких задач можно найти в тексте соответствующих пунктов. Дополнительный материал теоретического характера содержится в некоторых пунктах учебника, он выделен специальными значками.
[7] Высшая геометрия, Классический университетский учебник [2004] Ефимов
Перед вами прекрасная книга, в которой с редкой ясностью и яркостью излагаются основы геометрии — евклидовой и неевклидовой, проективной геометрии, геометрии постоянной кривизны. Эта книга — классический учебник, выдержавший семь изданий, отличается методически продуманным и умело распределенным материалом и остается современной и своевременной. Для студентов и аспирантов всех математических специальностей, физиков и информатиков, лекторов геометрических курсов, математиков-исследователей.
[8] Введение в теорию внешних форм [1977] Ефимов
Книга представляет собой краткое введение в теорию внешних форм. Она состоит из трех глав: 1) Алгебра внешних форм. 2) Внешнее дифференцирование. 3) Интегрирование форм по цепям. Автор ограничивается рассмотрением внешних форм и цепей в конечномерном евклидовом пространстве. Но на этом материале дается достаточное представление об отношениях сопряженности между пространствами форм и цепей и об основных парах сопряженных операторов. Книжка написана весьма просто и понятно. Выкладки и рассуждения везде проведены без существенных пропусков. Настоящая книга может быть полезной студентам математических специальностей университетов, которые слушают курсы анализа и геометрии. Возможно также, что его воспользуются механики и физики, заинтересованные в методах тензорного исчисления.
[9] Риманова геометрия и тензорный анализ [1977] Рашевский
По своему характеру эта книга гораздо ближе к учебнику, чем к монографии, предназначенной для специалистов. Это сказывается прежде всего в выборе материала: автор стремился дать лишь действительно основное и важнейшее в рассматриваемой области, но зато в развернутом изложении со всесторонним освещением предмета.
По характеру изложения книга должна быть вполне доступна студенту III курса университета. Другой характерной чертой книги являются выходы из области тензорного анализа и римановой геометрии в механику и физику; эти выходы автор старался указывать везде, где это было возможно. Как известно, наиболее замечательные приложения тензорный анализ и риманова геометрия имеют в области теории относительности; ей посвящены IV и X главы книги. Особую роль играет глава I; она носит как бы пропедевтический характер и развивает тензорные методы с их приложениями к механике и физике в простейшем (даже тривиальном) случае обычного пространства в прямоугольных декартовых координатах. Эта глава по уровню изложения должна быть доступна инженеру и студенту втуза, которые пожелали бы познакомиться с элементами тензорного анализа в минимальном объеме, необходимом для технических приложений.
В настоящее время нельзя пройти мимо псевдоевклидовых и псевдоримановых пространств (кстати, необходимых для теории относительности) и пространств аффинной связности. Эти вопросы нашли место в книге. На ряде примеров даны также основные идеи теории геометрических объектов, в том числе теория спиноров в четырехмерном пространстве. Изложение дополнено также рядом частных вопросов, но зато фундаментального значения (как, например, теория кривых и гиперповерхностей в римановом пространстве и др.).
Имея в виду значительный объем книги, автор отметил ряд параграфов звездочками, что означает возможность пропустить их без ущерба для понимания дальнейшего. Некоторые указания в этом направлении сделаны и в тексте. При всем том чисто факультативного материала книга не содержит, и почти все в ней изложенное в том или ином отношении имеет в рассматриваемой области важное значение.
[10] Курс анализа [1936] Эрмит Шарль
Курс этот издан не был, но сохранился в литографированном виде, составленном Андуайе; самое имя составителя ручается за точность изложения содержания; впрочем последнее, четвертое издание, было просмотрено самим Эрмитом. А. Н. Коркин был по своим воззрениям противником Вейерштрасса, но он высоко ставил курс Эрмита, рекомендовал его изучение магистрантам и всем своим ученикам.
Можно лишь приветствовать издание этого курса, который не должен служить учебником при первоначальном изучении Анализа, а должен служить пособием для тех, кто желает глубже изучить этот предмет и вникнуть в дальнейшее развитие этого предмета за последние сорок или пятьдесят лет.
Что такое математика?
Соавтор: Г. Роббинсом. Она призвана сократить разрыв между математикой, которая преподается в школе, и наиболее живыми и важными для естествознания и техники разделами современной математической науки. Начиная с элементарных понятий, читатель движется к важным областям современной науки. Книга написана очень доступно и является классикой популярного жанра в математике.
Отзывы читателей
Скачать книгу «Что такое математика?»
О книге
В суете повседневных дел хочется остановиться и дать себе возможность восстановить силы. В таком случае чтение будет отличным способом отдохнуть и увидеть что-то новое. Литература показывает, сколь различны и многовариантны судьбы людей, и ты осознаёшь, что ты – только часть огромного мира.
Книга Курант Риxард, Роббинс Герберт «Что такое математика?» относится к жанру математика и поможет получить новые знания и с успехом их применять в своей жизни. Автор книги создал удивительно яркое и запоминающееся произведение. Все герои объемные, характерные, вызывающие отклик у читателя.
И важно, что всё, о чем пишет автор, вызывает интерес в любое время, потому что об этом думает каждый. Читателю будет интересно обратить внимание не только на описанные события, но и на то, что прописано между строк. После прочтения книги понадобится ещё какое-то время, чтобы осмыслить рассказанное и сделать выводы для себя. На сайте можно читать книгу онлайн или скачать в формате pdf.
Р. Курант, Г. Роббинс «Что такое математика?» – пособие для юных гениев
Книга, написанная крупным математиком Рихардом Курантом в соавторстве с Гербертом Роббинсом, переиздавалась в нашей стране и обрела в России популярность. Её загадочный подзаголовок гласит: «Элементарный очерк идей и методов».
Издание переведено с английского и вышло в свет под редакцией А. Н. Колмогорова в издательстве МЦНМО (Москва, 2015 г.)
Издатели от лица авторов сообщают, что «книга призвана сократить разрыв между математикой, которая преподается в школе, и наиболее живыми и важными для естествознания и техники разделами современной математической науки».
Если на этот счет волнуются известные ученые, значит, разрыв действительно есть. Получается, школьники недополучают самые актуальные знания и на несколько шагов отстают от новых математических реалий.
Продолжаем читать аннотацию к креативному учебнику: «Начиная с элементарных понятий, читатель движется к важным областям современной науки.
Книга написана доступным языком и является классикой популярного жанра в математике.
Книга предназначена для школьников, студентов, преподавателей, а также для всех интересующихся развитием математики и ее структурой.
Предыдущее издание вышло в 2013 г.»
Вы можете скачать книгу на нашем сайте. Чтобы составить себе впечатление о ее содержании, ознакомьтесь с оглавлением.
Р. Курант, Г. Роббинс «Что такое математика?» Оглавление
Предисловие к изданию на русском языке 10
К русскому читателю 14
Как пользоваться книгой 19
Ч т о т а к о е м а т е м а т и к а? 20
Гл а в а I. Натуральные числа 25
*5. Одно важное неравенство. *6. Биномиальная теорема. 7. Дальнейшие замечания по поводу метода математической индукции.
Д о п о л н е н и е к г л а в е I. Теория чисел 45
Гл а в а II. Математическая числовая система 77
и периодические десятичные дроби. 5. Общее определение иррацио нальных чисел посредством стягивающихся отрезков. *6. Иные мето ды определения иррациональных чисел. Дедекиндовы сечения.
*4. Основная теорема алгебры.
Д о п о л н е н и е к г л а в е II. Алгебра множеств 134
Гл а в а III. Геометрические построения. Алгебра числовых полей 143
Часть 1. Доказательства невозможности и алгебра 146
Часть 2. Различные методы выполнения построений 167
с помощью одного циркуля 173
*1. Классическая конструкция, служащая для удвоения куба. 2. По строения с помощью одного циркуля. 3. Черчение с помощью различных механических приспособлений. Механические кривые. Циклоиды.
*4. Шарнирные механизмы. Инверсоры Поселье и Гарта.
Гл а в а IV. Проективная геометрия. Аксиоматика. Неевклидовы геометрии 191
«линейчатые кривые». 4. Теоремы Паскаля и Брианшона для общего случая произвольных конических сечений. 5. Гиперболоид.
П р и л о ж е н и е. Геометрия в пространствах более чем трех измерений 253
Гл а в а V. Топология 261
П р и л о ж е н и е. 290
*1. Проблема пяти красок. 2. Теорема Жордана для случая много угольников. *3. Основная теорема алгебры.
Гл а в а VI. Функции и пределы 299
*6. Функции нескольких переменных. *7. Функции и преобразования.
Д о п о л н е н и е к г л а в е VI. Дальнейшие примеры на пределы и непрерывность 349
функции как предел непрерывных. *5. Пределы при итерации.
Гл а в а VII. Максимумы и минимумы 357
*5. Экстремальные расстояния точки от данной кривой.
*§ 9. Экстремальные проблемы с граничными условиями. Связь между про блемой Штейнера и изопериметрической проблемой 404
Опыты с мыльными пленками 413
Гл а в а VIII. Математический анализ 425
Д о п о л н е н и е к г л а в е VIII. 491
*§4. Доказательство теоремы о простых числах на основе статистического метода 511
Приложение. Дополнительные замечания. Задачи и упражнения 517
Арифметика и алгебра 517
Аналитическая геометрия 519
Геометрические построения 525
Проективная и неевклидова геометрия 525
Функции, пределы, непрерывность 530
Максимумы и минимумы 531
Дифференциальное и интегральное исчисления 533
Техника интегрирования 535
Вклейка «От издательства» в первое издание книги на русском языке 541
Добавление 2. О создании книги «Что такое математика?» 544