Кто считал что солнце во много раз больше земли
1. Геоцентрическая система мира
Путь к пониманию положения нашей планеты и живущего на ней человечества во Вселенной был очень непростым и подчас весьма драматичным. В древности было естественным считать, что Земля является неподвижной, плоской и находится в центре мира. Казалось, что вообще весь мир создан ради человека. Подобные представления получили название антропоцентризма (от греч. antropos — человек).
Многие идеи и мысли, которые в дальнейшем отразились в современных научных представлениях о природе, в частности в астрономии, зародились в Древней Греции, еще за несколько веков до нашей эры. Трудно перечислить имена всех мыслителей и их гениальные догадки. Выдающийся математик Пифагор (VI в. до н. э.) был убеждён, что «в мире правит число». Считается, что именно Пифагор первым высказал мысль о том, что Земля, как и все другие небесные тела, имеет шарообразную форму и находится во Вселенной без всякой опоры.
Другой не менее известный учёный древности, Демокрит — основоположник представлении об атомах, жившии за 400 лет до нашей эры, — считал, что Солнце во много раз больше Земли, что Луна сама не светится, а лишь отражает солнечный свет, а Млечный Путь состоит из огромного количества звёзд.
Обобщить все знания, которые были накоплены к IV в. до н. э., смог выдающийся философ античного мира Аристотель (384—322 до н. э.). Его деятельность охватывала все естественные науки — сведения о небе и Земле, о закономерностях движения тел, о животных и растениях и т. д. Главной заслугой Аристотеля как учёного-энциклопедиста было создание единой системы научных знаний.
На протяжении почти двух тысячелетий его суждения по многим вопросам не подвергались сомнению.
Согласно Аристотелю, всё тяжёлое стремится к центру Вселенной, где скапливается и образует шарообразную массу — Землю. Планеты размещены на особых сферах, которые вращаются вокруг Земли. Такая система мира получила название геоцентрической (от греческого названия Земли — Гея). Аристотель не случайно предложил считать Землю неподвижным центром мира. Если бы Земля перемещалась, то, по справедливому мнению Аристотеля, было бы заметно регулярное изменение взаимного расположения звёзд на небесной сфере. Но ничего подобного никто из астрономов не наблюдал. Только в начале XIX в. было наконец-то обнаружено и измерено смещение звёзд (параллакс), происходящее вследствие движения Земли вокруг Солнца.
Многие обобщения Аристотеля были основаны на таких умозаключениях, которые в то время не могли быть проверены опытом. Так, он утверждал, что движение тела не может происходить, если на него не действует сила. Как вы знаете из курса физики, эти представления были опровергнуты только в XVII в. во времена Галилея и Ньютона.
Среди учёных древности выделяется смелостью своих догадок Аристарх Самосский, живший в III в. до н. э. Он первым определил расстояние до Луны, вычислил размеры Солнца, которое, по его данным, оказалось в 300 с лишним раз больше Земли по объёму. Вероятно, эти данные стали одним из оснований для вывода о том, что Земля вместе с другими планетами движется вокруг этого самого крупного тела. В наши дни Аристарха Самосского стали называть «Коперником античного мира».
Николай Коперник: гелиоцентрическая система мира
Возрождение: из истории великой эпохи
Остановивший Солнце: из истории жизни Коперника
Николай Коперник, поляк по происхождению, родился в семье зажиточного купца 19 февраля 1473 г. в городе Торне, куда переселялся из Кракова его отец.
Пробыв в Италии около десяти лет с небольшими перерывами, Коперник возвратился к себе на родину и большую часть остальной жизни правел в маленьком городке Фрауенбурге, где стараниями своего дяди епископа Вармийского (Эрмляндского) получил ещё в 1497 г. место каноника. Он стал, следовательно, католическим священником и весьма ревностно выполнял двои обязанности. Во Фрауенбурге, в этом, по выражению Коперника, «отдалённейшем уголке земли», он имел достаточный досуг и, окружённый добрым в общем отношении друзей и сограждан, окончательна сформулировал положения своей системы, основные контуры которой сложились у него, вероятно, ещё в Италии.
Первый набросок идей Коперника мы находим приблизительно а 1512 г., в так называемом «Commentarioius» («Малый комментарий»), который не был напечатан, но ходил по рукам в рукописном виде и принес его автору изрядную популярность. Лишь в 1539 г. Коперник разрешил своему другу профессору математики Виттенбергского университета Георгу-Иоахиму Ретику, ученику и горячему поклоннику «нового Птолемея», опубликовать краткое предварительное сообщение (Narratio prima) о достигнутых научных результатах.
Собственное сочинение Коперника вышло из печати за несколько дней до смерти автора, последовавшей 24 мая 1543 г. Предание, известное нам от Гассенди (биограф ученого), рассказывает, что только что отпечатанный экземпляр сочинения «De revolutionibus orbium coelestium» принесли Копернику за несколько часов до кончины. «Он взял книгу в руки и смотрел на нее, но мысли его были уже далеко».
Джордано Бруно: далекие миры поклонника системы
Джордано Бруно (1548 – 1600) | Джордано Бруно – верный поклонник системы Коперника. Поэт и философ, пострадавший за истину, хорошо выразил в поэтической форме новое понимание, новое мироощущение, связанное с представлениями о планетах солнечной системы: «Хоры блуждающих звёзд, я к вам свой Джордано Бруно считал, что возможно открытие в Солнечной системе новых планет. Никакого купола звёзд не существует, звёзды движутся, а мы не замечаем этого потому, что они очень далеки от нас. Вращение небесных тел: из истории представленийЧасть 1. Геоцентрическая система
Для объяснения видимого неравномерного движения планет Птолемей использовал систему равномерных круговых движений. Каждая планета, как он считал, движется равномерно по кругу – эпициклу, центр которого, в свою очередь, равномерно перемещается по другому кругу – деференту. Следует отметить, такое представление движения планет давало возможность довольно точно описывать наблюдаемое их движение. Правда при увеличении точности наблюдений приходилось существенно корректировать прежнюю систему эпициклов и деферентов. Часть 2. Гелиоцентрическая системаВ 1543 г. Н. Коперник опубликовал свой основной труд «Об обращении небесных сфер» с изложением и обоснованием гелиоцентрической системы мира. Согласно новому учению, в центре Вселенной находится Солнце, а Земля – одна из планет, движущихся вокруг Солнца. Небосвод же, на котором находятся все звёзды, вовсе и не вращается вокруг Земли, как считали прежде, а покоится. Его видимое движение объясняется суточным обращением Земли вокруг собственной оси. Коперник убрал человека из центра мира, сделал бессмысленным деление на подлунный и надлунный миры. Тем самым он разрушил самые основы традиционных представлений о мире и открыл новые, невиданные прежде возможности для развития не только астрономии, но и всего естествознания. Коперник своей работой открыто заявлял, что главным авторитетом в познании мира являются не древние книги, а реальное изучение природы.
Сущность своей системы мира Коперник изложил в посвящении папе Павлу III: «Обдумывая долгое время шаткость переданных нам математических догматов касательно взаимного соотношения движения небесных тел, я стал досадовать, наконец, на то, что философам, стремящимся обычно к распознаванию самых ничтожных вещей, до сих пор ещё не удалось с достаточной верностью объяснить ход мировой машины, созданной лучшим и любящим порядок Зодчим. Обыкновенно принято, что Земля находится в покое, но пифагореец Филолай допускает, что Земля, равно как и Солнце и Луна, движется вокруг огня по косому кругу. Гераклит Понтский, а равно и пифагореец Экфант также придают Земле движение, но не поступательное, а вращательное, вследствие которого она, подобно колесу па направлению от заката к востоку, вращается вокруг своего центра». Так как, замечает далее Коперник, для объяснения небесных явлений до него дозволялось придумывать произвольные круги, по которым двигались земля, солнце и планеты, то и он позволил себе истолковать движения этих небесных светил, исходя из движения Земли:
Часть 3. Место в историиСреди великих астрономов и математиков, окончательно выяснивших место нашей Земли во Вселенной и раскрывших законы движения, управляющие солнечной системой (Коперник, Тихо де Браге, Кеплер, Галилей, Ньютон), Коперник по времени был первым. После него было сделано и ещё будет сделано очень много в изучении солнечной системы, а некоторые утверждения Коперника (например его мнение, что Земля и планеты движутся равномерно вокруг Солнца по кругам, тогда как в действительности это вращение происходит неравномерно и по эллипсам) были впоследствии опровергнуты; тем не менее Копернику принадлежит слава первого учёного, установившего новую истину, столь же простую, сколь и гениального, которую он выразил в своём сочинении «О вращении небесных тел», сказав, что «в центре всего находится Солнце». Книга Коперника, в конце концов, в 1616 г. попала в далекий «Указатель запрещённых книг», и это запрещение было снято с неё только в 1823 году. Церковники без различия толков и направлений поняли вредоносное для них значение новой теории. Она разрушала, пусть величественный, но всё же близкий человеку небесный мир как обиталище бога. Она вырывала Землю – «подножие ног Его» – из центра вселенной и превращала её в жалкую пылинку, затерявшуюся в бесконечном пространстве, населённом бесчисленным сонмом сверкающих звёздами солнц. Список литературы и источников: Веселовский И. Н., Белый Ю. А. Николай Коперник. М., 1974. Геоцентрическая система мира
Путь к пониманию положения нашей планеты и живущего на ней человечества во Вселенной был очень непростым и подчас весьма драматичным. В древности было естественным считать, что Земля является неподвижной, плоской и находится в центре мира. Казалось, что вообще весь мир создан ради человека. Подобные представления получили название антропоцентризма (от греч. antropos — человек). Многие идеи и мысли, которые в дальнейшем отразились в современных научных представлениях о природе, в частности в астрономии, зародились в Древней Греции, ещё за несколько веков до нашей эры. Трудно перечислить имена всех мыслителей и их гениальные догадки. Выдающийся математик Пифагор (VI в. до н. э.) был убеждён, что «в мире правит число». Считается, что именно Пифагор первым высказал мысль о том, что Земля, как и все другие небесные тела, имеет шарообразную форму и находится во Вселенной без всякой опоры. «Другой не менее известный учёный древности, Демокрит — основоположник представлений об атомах, живший за 400 лет до нашей эры», — считал, что Солнце во много раз больше Земли, что Луна сама не светится, а лишь отражает солнечный свет, а Млечный Путь состоит из огромного количества звёзд. Обобщить все знания, которые были накоплены к IV в. до н. э., смог выдающийся философ античного мира Аристотель (384—322 до н. э.). Его деятельность охватывала все естественные науки — сведения о небе и Земле, о закономерностях движения тел, о животных и растениях и т. д. Главной заслугой Аристотеля как учёного-энциклопедиста было создание единой системы научных знаний. На протяжении почти двух тысячелетий его суждения по многим вопросам не подвергались сомнению. Согласно Аристотелю, всё тяжёлое стремится к центру Вселенной, где скапливается и образует шарообразную массу — Землю. Планеты размещены на особых сферах, которые вращаются вокруг Земли. Такая система мира получила название геоцентрической (от греческого названия Земли — Гея). Аристотель не случайно предложил считать Землю неподвижным центром мира. Если бы Земля перемещалась, то, по справедливому мнению, Аристотеля, было бы заметно регулярное изменение взаимного расположения звёзд на небесной сфере. Но ничего подобного никто из астрономов не наблюдал. Только в начале XIX в. было наконец-то обнаружено и измерено смещение звёзд (параллакс), происходящее вследствие движения Земли вокруг Солнца. Многие обобщения Аристотеля были основаны на таких умозаключениях, которые в то время не могли быть проверены опытом. Так, он утверждал, что движение тела не может происходить, если на него не действует сила. Как вы знаете из курса физики, эти представления были опровергнуты только в XVII в. во времена Галилея и Ньютона. Среди учёных древности выделяется смелостью своих догадок Аристарх Самосский, живший в III в. до н. э. Он первым определил расстояние до Луны, вычислил размеры Солнца, которое, по его данным, оказалось в 300 с лишним раз больше Земли по объёму. Вероятно, эти данные стали одним из оснований для вывода о том, что Земля вместе с другими планетами движется вокруг этого самого крупного тела. В наши дни Аристарха Самосского стали называть «Коперником античного мира». К сожалению, труды этого замечательного учёного до нас практически не дошли, и более полутора тысяч лет человечество было уверено, что Земля — это неподвижный центр мира. В немалой степени этому способствовало математическое описание видимого движения светил, которое во II в. н. э. разработал для геоцентрической системы мира один из выдающихся математиков древности — Клавдий Птолемей.Наиболее сложной задачей оказалось объяснение петлеобразного движения планет (рис. 3.1). Рис. 3.1. Видимое петлеобразное движение Марса Рис. 3.2. Система Птолемея Птолемей в своём знаменитом сочинении «Математический трактат по астрономии» (оно более известно, как «Альмагест») утверждал, что каждая планета равномерно движется по эпициклу — малому кругу, центр которого движется вокруг Земли по деференту — большому кругу (рис. 3.2). Тем самым ему удалось объяснить особый характер движения планет, которым они отличались от Солнца и Луны. Система Птолемея давала чисто кинематическое описание движения планет — иного наука того времени предложить не могла. Как древние греки опередили КоперникаНо когда оказалось, что он ровно ничего не знает ни о теории Коперника, ни о строении солнечной системы, я просто опешил от изумления. Артур Конан Дойл, «Этюд в багровых тонах» Больше двух тысячелетий назад, в Древней Греции, астроном Аристарх Самосский пришёл к выводу, что Земля вращается вокруг Солнца. Постойте, постойте! Это же сделал Николай Коперник! И не два тысячелетия, а «всего» 500 лет назад. Это ведь он доказал, что все планеты вращаются вокруг Солнца. Или нет? Да, конечно, Коперник. Он установил это, опираясь на множество расчётов и наблюдений, на которые потратил 40 лет. Но первая гелиоцентрическая модель Солнечной системы была построена не им, а Аристархом, на 1800 лет раньше! Коперник знал о ней и строго подтвердил и обосновал эту модель. Аристарху удалось невероятное — пользуясь элементарной геометрией, лишь наблюдая за небом, он придумал способ вычислить размеры Луны и Солнца и расстояния до них. И написал об этом книгу «О величинах и расстояниях Солнца и Луны». А разве так можно? Ведь Луна и Солнце очень далеко. Как узнать их размеры без современных приборов, без применения законов физики? Оказывается, можно, причём совсем простым рассуждением, доступным школьнику. Сейчас мы сами это проделаем. Найдём размеры Солнца и Луны, а потом вместе с Аристархом придём к выводу о том, что именно Земля должна вращаться вокруг Солнца, а не наоборот. Но Аристарху тогда никто не поверил. Почему? В этом мы тоже разберёмся. Но прежде чем измерять другие планеты и звёзды, надо измерить Землю. Измеряем ЗемлюКто первый высказал идею о шарообразности Земли, неизвестно. Возможно — Пифагор и его ученики, считавшие шар совершеннейшей из фигур. Полтора века спустя Аристотель приводит несколько доказательств шарообразности Земли. Главное из них: во время лунного затмения на поверхности Луны отчётливо видна тень от Земли, и эта тень круглая! Эратосфен был крупнейшим учёным-энциклопедистом, занимался не только математикой, но и географией, картографией и астрономией. Он долгое время возглавлял Александрийскую библиотеку в Египте — главный научный центр того времени. Работая над составлением первого атласа Земли (конечно, не всей Земли, а известной к тому времени её части), он задумал провести точное измерение земного шара. Ведь чтобы составить карту, надо знать расстояния! Идея была такова. К югу от Александрии, в городе Сиена (современный Асуан) один день в году, ровно в полдень, Солнце достигает зенита — высшей точки на небе. Исчезает тень от вертикального шеста, на несколько минут освещается дно колодца. Происходит это в день летнего солнцестояния, 22 июня — день наивысшего положения Солнца на небе. Эратосфен направляет своих помощников 2 в Сиену, и те устанавливают, что ровно в полдень (по солнечным часам) Солнце находится точно в зените. Одновременно (как написано в первоисточнике: «в тот же час») Эратосфен измеряет длину тени от вертикального шеста в Александрии. Получился треугольник, который на схематичном рисунке 2, а мы обозначили КАВ и перерисовали крупнее на рисунке 2, б. В Сиене солнечный луч перпендикулярен поверхности Земли, значит, если его продолжить, пройдёт через центр Земли. Параллельный ему луч в Александрии составляет угол с вертикалью, который мы обозначим буквой α. Такой же угол образуют радиусы Земли ZA и ZS, идущие из центра Земли в Александрию и Сиену. Семиклассники знают, почему — потому что накрест лежащие углы при параллельных прямых равны. А младшие пусть поверят нам на слово. Теперь нарисуем круг радиусом 1 с центром на конце шеста — в точке K (рис. 2, в). Измерим длину дуги внутри угла α, обозначим её буквой d. На рисунке она выделена красным, а круговой сектор (то есть «долька» круга) — синим. Ему соответствует гигантский круговой сектор между радиусами Земли ZA и ZS, и он подобен синей «дольке», потому что имеет тот же угол α. Значит, дуга AS во столько раз больше дуги d, во сколько раз радиус Земли R = ZA больше радиуса маленького круга, равного 1. Итак, AS : d = R : 1. Длину d мы знаем (измерили). Как найти длину дуги AS? Это длина пути из Александрии в Сиену, около 800 км. Её Эратосфен аккуратно вычисляет, исходя из среднего времени движения верблюжьих караванов между двумя городами, а также используя данные бематистов — людей особой профессии, измерявших расстояния шагами. Поделив 800 км на длину дуги d, находим радиус Земли — примерно 6400 км. А длина окружности Земли равна 2πR = 40 000 км. Удивительно, что получилось столь круглое число! Разгадка проста: сама единица длины в 1 метр и была введена (во Франции в конце XVIII века), как одна сорокамиллионная часть окружности Земли (по определению!). Эратосфен, конечно, использовал другую единицу измерения — стадий (около 200 м). Стадиев было несколько: египетский, греческий, вавилонский, и каким из них пользовался Эратосфен — неизвестно. Поэтому трудно судить наверняка о точности его измерения. Кроме того, неизбежная ошибка возникала в силу географического положения двух городов. Если города находятся на одном меридиане, то полдень в них наступает одновременно. Поэтому, сделав измерения во время наивысшего положения Солнца в каждом городе, мы получим правильный результат. Но на самом деле Александрия и Сиена — не на одном меридиане. Мы можем легко в этом убедиться, взглянув на карту, но у Эратосфена карты не было (ведь он как раз и составлял первую карту). Поэтому его метод (абсолютно верный!), скорее всего, дал неточный результат. Тем не менее, многие исследователи уверены, что точность измерения Эратосфена была высока и что он ошибался менее чем на 2%. Более точное значение было получено только через 2 тысячи лет, в середине XIX века. Над этим трудилась группа учёных во Франции и экспедиция В. Я. Струве в России. Даже в эпоху великих географических открытий, в XVI веке, люди не смогли достичь результата Эратосфена и пользовались неверным значением длины земной окружности. Ни Колумб, ни Магеллан не знали, каковы истинные размеры Земли и какие расстояния им придётся преодолевать. Они-то считали, что длина экватора гораздо меньше, чем на самом деле. Знали бы — может и не поплыли бы. В чём причина высокой точности метода Эратосфена? До него измерения были локальными, на расстояниях, обозримых человеческим глазом, то есть не более 100 км. При этом неизбежны ошибки из-за рельефа местности, атмосферных явлений и т.д. Для большей точности нужно проводить измерения на очень больших расстояниях. Восьмисот километров между Александрией и Сиеной оказалось достаточно. Опыт Эратосфена можно проделать и в наших широтах, где Солнце не бывает в зените. Правда, для этого нужны две точки обязательно на одном меридиане. Если же повторить опыт Эратосфена для Александрии и Сиены, сделав измерения в этих городах одновременно (сейчас это легко, можно послать SMS), мы получим верный ответ. И будет неважно, находятся ли города на одном меридиане (почему?). Измеряем Луну и СолнцеОказывается, измерить «подручными средствами» Луну и Солнце даже проще, чем Землю. Для этого не нужно уходить за 800 км, а можно всё сделать, не сходя с места. Мы повторим рассуждения Аристарха, попутно чуть поправив и упростив их. Наши измерения будут состоять из трёх простых шагов. Сначала понаблюдаем за Луной. Шаг 1. Во сколько раз Солнце дальше, чем Луна? Почему иногда видна полная Луна, а иногда месяц? Потому что Луна светит отражённым солнечным светом. Если взять шар и посветить на него с одной стороны, то в любом положении освещённой окажется ровно половина шара. Так же и Солнце всегда освещает ровно половину поверхности Луны. Видимая форма Луны зависит от того, как повёрнута к нам эта освещённая половина. В новолуние, когда Луна вовсе не видна на небе, Солнце освещает её обратную сторону. Затем освещённая половина постепенно поворачивается в сторону Земли. Мы начинаем видеть тонкий серп, затем — месяц («растущая Луна»), далее — полукруг (эта фаза Луны называется «квадратурой»). Затем день ото дня (вернее, ночь от ночи) полукруг дорастает до полной Луны. Потом начинается обратный процесс: освещённая полусфера от нас отворачивается. Луна «стареет», постепенно превращаясь в месяц, повёрнутый к нам левой стороной, подобно букве «C», и, наконец, в ночь новолуния исчезает. Период от одного новолуния до другого длится примерно четыре недели. За это время Луна совершает полный оборот вокруг Земли. От новолуния до половины Луны проходит четверть периода, отсюда и название «квадратура». Замечательная догадка Аристарха была в том, что, когда Луна в квадратуре, солнечные лучи, освещающие половину Луны, перпендикулярны прямой, соединяющей Луну с Землёй, то есть треугольник ZLS, соединяющий Землю, Луну и Солнце, — прямоугольный (рис. 3). Для простоты мы считаем, что наблюдатель находится в центре Земли. Это несильно повлияет на результат, так как расстояние от Земли до Луны и до Солнца значительно больше размеров Земли. Рис. 3. Луна в квадратуре (схема) Измерим угол β между лучами ZL и ZS во время квадратуры. Для этого надо одновременно видеть на небе Солнце и Луну: такое возможно, например, ранним утром. Затем нарисуем на большом листе другой прямоугольный треугольник с тем же углом β. Эти треугольники подобны. Измерив линейкой треугольник на листе, мы узнаем, что его гипотенуза в 400 раз больше катета. Значит, и в гигантском треугольнике ZLS гипотенуза ZS во столько же раз больше катета ZL. Таким образом, ZS = 400 ZL, значит Солнце в 400 раз дальше от Земли, чем Луна. Аристарх получил отношение 20, а не 400, в первую очередь из-за того, что точно установить момент наступления квадратуры по внешнему виду Луны крайне трудно. И всё же наблюдение Аристарха впечатляет. Если бы, как тогда многие считали, Солнце и Луна были примерно на одном расстоянии от Земли, то в момент, когда Луна освещена наполовину, они находились бы недалеко друг от друга на небе, что совсем не так. Убедитесь в этом сами, посмотрев во время квадратуры днём на небо: положение Луны относительно Солнца позволит вам хоть немного лучше ощутить эти огромные масштабы. Художник Мария Усеинова 1 Конечно, для этого надо обладать очень острым зрением и делать наблюдения в благоприятных условиях. Но в наше время, с помощью оптики с большим увеличением, это сделать легко. Видео «проседающего» на горизонте корабля есть в Интернете. 2 По легенде, одним из них был Архимед, друживший с Эратосфеном.
|