Кристалл процессора что это
Устройство процессора, из чего состоит процессор
Итак, что же окажется внутри микропроцессора, если его разобрать:
цифрой 1 обозначается металлическая поверхность (крышка) микропроцессора, служащая для отвода тепла и защиты от механических повреждений того, что находится за этой крышкой (тоесть внутри самого процессора).
Крышка (1) крепится к подложке (3) с помощью клея-герметика, устойчивого к высоким температурам. Между кристаллом (2) и крышкой нет воздушного зазора, его место занимает термопаста, при застывании из нее получается «мостик» между кристаллом процессора и крышкой, благодаря чему обеспечивается очень хороший отток тепла.
Кристалл соединяется с подложкой с помощью пайки и герметика, контакты подложки соединяются с контактами кристалла. На этом рисунке наглядно показано как соединяются контакты кристалла с контактами подложки при помощи очень тонких проводков (на фото 170-кратное увеличение):
Так например выглядит контактная подложка процессора Intel Pentium 4 (процессор перевернут):
Форма контактов и структура их расположения зависит от сокета процессора и материнской платы компьютера (сокеты должны совпадать). Например на рисунке чуть выше контакты у процессора без «штырьков», поскольку штырьки находятся прямо в сокете материнской платы.
А бывает другая ситуация, где «штырьки» контактов торчат прямо из контактной подложки. Эта особенность характерна в основном для процессоров AMD:
Вот и все устройство центрального микропроцессора, вкратце конечно же.
Как на самом деле производят процессоры
Чтобы создать сверхмощный процессор, достаточно простого.
Песок. В наших компьютерах в буквальном смысле песок, вернее — составляющий его кремний. Это основной элемент, благодаря которому в компьютерах всё работает. А вот как из песка получаются компьютеры.
Что такое процессор
Процессор — это небольшой чип внутри вашего компьютера или телефона, который производит все вычисления. Об основе вычислений мы уже писали — это транзисторы, которые собраны в сумматоры и другие функциональные блоки.
Если очень упрощённо — это сложная система кранов и труб, только вместо воды по ним течёт ток. Если правильным образом соединить эти трубы и краны, ток будет течь полезным для человека образом и получатся вычисления: сначала суммы, потом из сумм можно получить более сложные математические операции, потом числами можно закодировать текст, цвет, пиксели, графику, звук, 3D, игры, нейросети и что угодно ещё.
Кремний
Почти все процессоры, которые производятся в мире, делаются на кремниевой основе. Это связано с тем, что у кремния подходящая внутренняя атомная структура, которая позволяет делать микросхемы и процессоры практически любой конфигурации.
Самый доступный источник кремния — песок. Но кремний, который получается из песка, на самом первом этапе недостаточно чистый: в нём есть 0,5% примесей. Может показаться, что чистота 99,5% — это круто, но для процессоров нужна чистота уровня 99,9999999%. Такой кремний называется электронным, и его можно получить после цепочки определённых химических реакций.
Когда цепочка заканчивается и остаётся только чистый кремний, можно начинать выращивать кристалл.
Кристалл и подложка
Кристаллы — это такие твёрдые тела, в которых атомы и молекулы вещества находятся в строгом порядке. Проще говоря, атомы в кристалле расположены предсказуемым образом в любой точке. Это позволяет точно понимать, как будет вести себя это вещество при любом воздействии на него. Именно это свойство кристаллической решётки используют на производстве процессоров.
Самые распространённые кристаллы — соль, драгоценные камни, лёд и графит в карандаше.
Большой кристалл можно получить, если кремний расплавить, а затем опустить туда заранее подготовленный маленький кристалл. Он сформирует вокруг себя новый слой кристаллической решётки, получившийся слой сделает то же самое, и в результате мы получим один большой кристалл. На производстве он весит под сотню килограмм, но при этом очень хрупкий.
Готовый кристалл кремния.
После того, как кристалл готов, его нарезают специальной пилой на диски толщиной в миллиметр. При этом диаметр такого диска получается около 30 сантиметров — на нём будет создаваться сразу несколько десятков процессоров.
Каждую такую пластинку тщательно шлифуют, чтобы поверхность получилась идеально ровной. Если будут зазубрины или шероховатости, то на следующих этапах диск забракуют.
Готовые отполированные пластины кремния.
Печатаем транзисторы
Когда диски отполированы, на них можно формировать процессоры. Процесс очень похож на то, как раньше печатали чёрно-белые фотографии: брали плёнку, светили сверху лампой, а снизу клали фотобумагу. Там, куда попадал свет, бумага становилось тёмной, а те места, которые закрыло чёрное изображение на плёнке, оставались белыми.
С транзисторами всё то же самое: на диск наносят специальный слой, который при попадании света реагирует с молекулами диска и изменяет его свойства. После такого облучения в этих местах диск начинает проводить ток чуть иначе — сильнее или слабее.
Чтобы так поменять только нужные участки, на пути света помещают фильтр — прямо как плёнку в фотопечати, — который закрывает те места, где менять ничего не надо.
Потом получившийся слой покрывают тонким слоем диэлектрика — это вещество, которое не проводит ток, типа изоленты. Это нужно, чтобы слои процессора не взаимодействовали друг с другом. Процесс повторяется несколько десятков раз. В результате получаются миллионы мельчайших транзисторов, которые теперь нужно соединить между собой.
Соединяем всё вместе
То, как соединяются между собой транзисторы в процессоре, называется процессорной архитектурой. У каждого поколения и модификации процессоров своя архитектура. Все производители держат в секрете тонкости архитектуры, потому что от этого может зависеть скорость работы или стоимость производства.
Так как транзисторов много, а связей между ними нужно сделать немало, то поступают так: наносят токопроводящий слой, ставят фильтр и закрепляют проводники в нужном месте. Потом слой диэлектрика и снова токопроводящий слой. В результате выходит бутерброд из проводников, которые друг другу не мешают, а транзисторы получают нужные соединения.
Токопроводящие дорожки крупным планом. На фото они уже в несколько слоёв и не мешают друг другу.
В чём сложность
Современные процессоры производятся на нанометровом уровне, то есть размеры элементов измеряются нанометрами, это очень мало.
Если, например, во время печати очень толстый мальчик упадёт на пол в соседнем цехе, еле заметная ударная волна прокатится по перекрытиям завода и печатная форма немного сдвинется, а напечатанные таким образом транзисторы окажутся бракованными. Пылинка, попавшая на пластину во время печати — это, считай, загубленное ядро процессора.
Поэтому на заводах, где делают процессоры, соблюдаются жёсткие стандарты чистоты, все ходят в масках и костюмах, на всех воздуховодах стоят фильтры, а сами заводы находятся на сейсмических подушках, чтобы толчки земной коры не мешали производить процессоры.
Крышка и упаковка
Когда дорожки готовы, диск отправляют на тесты. Там смотрят на то, как работает каждый процессор, как он греется и сколько ему нужно энергии, заодно проверяют на брак.
В зависимости от результатов процессоры с одной пластины могут получить разную маркировку и продаваться по разной стоимости. Те процессоры, которые получились более удачными, становятся дорогими серверными продуктами. Те, где кто-то рядом чихнул или вздохнул, имеют некоторые несовершенства и дефекты, их могут отправить на потребительскую линию.
После тестов диск разрезают на готовые процессорные ядра.
Пластина со множеством одинаковых процессорных ядер.
Робот вырезает ядра из готовой пластины.
После этого к ядру процессора добавляют контакты, чтобы можно было вставить его в материнскую плату, и накрывают крышкой. Чёрный или металлический прямоугольник, из которого торчат ножки, — это как раз крышка.
Крышка выполняет две функции: защищает сам кристалл от повреждений и отводит от него тепло во время работы. Дело в том, что миллионы транзисторов при работе нагреваются, и если процессор не остужать, то он перегреется и кристалл может испортиться. Чтобы такого не произошло, на крышку процессора ставят воздушные кулеры или делают водяное охлаждение.
Система на чипе
Чипы процессоров уже настолько маленькие, что под одной крышкой можно поместить какое-нибудь ещё устройство. Например, видеосистему — то, что обсчитывает картинку перед выводом на экран. Или устройство радиосвязи с антенной.
В какой-то момент на маленьком чипе площадью около 1 см 2 уже можно было поместить процессор, видео, модем и блютус, сделать всё нужное для поддержки памяти и периферии — в общем, система на чипе. Подключаете к этому хозяйству экран, нужное количество антенн, портов и кнопок, а главное — здоровенную батарею, и у вас готовый смартфон. По сути, все «мозги» вашего смартфона находятся на одном маленьком чипе, а 80% пространства за экраном занимает батарея.
Как делают микропроцессоры
Большие дела начинаются с малого. Это высказывание справедливо для многих вещей, но в этой статье пойдет речь об изготовлении микропроцессоров, которыми нашпигованы самые разные бытовые приборы, что вас окружают, от смартфонов и до холодильников.
Содержание
Подготовка сырья
Компьютерные чипы сложнейшей структуры, способные производить мгновенные вычисления, рождаются огромных тиглях из кварцевого стекла, наполненных до краев песком, прошедшим многоступенчатую очистку.
Прежде всего из песка, набранного в каком-нибудь карьере, получают «технический» кремний путем добавления в минерал углерода при высокой температуре. Получившийся в результате кремний при чистоте достигает 98%, но все еще совершенно не подходит для целей электронной промышленности и, чтобы стать «электронным кремнием», ему требуется дополнительная обработка хлором. В процессе каскада химических реакций с хлором, кремний буквально синтезируется заново, избавляясь от последних признаков примесей.
Только после этого тигель с чистейшим электронным кремнием помещают в герметичную печь, которая наполнена аргоном. Конечно, можно было бы откачать из нее воздух, но создать идеальный вакуум на земле очень сложно, если не невозможно, а с химической точки зрения аргон дает практически тот же эффект. Этот инертный газ замещает кислород, защищая состав от окисления, а сам никак не реагирует с кремнием в тигле.
Только после этого бывший песок разогревается до 1420 градусов Цельсия, что всего на 6 градусов выше его точки плавления. Для этого используется графитовый нагреватель. Выбор материала, как и в случае с кварцем тигля, обусловлен тем, что графит не реагирует с кремнием и, следовательно, не может загрязнить материал будущего процессора.
В нагретый тигель опускается тонкий затравочный кристалл кремния, размером и формой напоминающий карандаш. Он должен запустить процесс кристаллизации. Дальнейшее можно воспроизвести в домашних условиях с раствором соли, сахара, лимонной кислоты или, например, медного купороса. Остывающий раствор начинает кристаллизироваться вокруг затравочной точки, образуя идеальную молекулярную решетку. Так выращивают кристаллы соли, так растет и кремний.
Затравочный кристалл кремния постепенно поднимают из тигля, со скоростью примерно полтора миллиметра в минуту, и с ним из раствора поднимается растущий монокристалл. Рост кристалла происходит медленно и на один тигель уходит в среднем 26 часов, так что производство работает круглосуточно.
За это время образуется «буля» — цельный цилиндрический кристалл диаметром 300 миллиметров, длиной до 1-2 метров и весом около 100 килограммов. Если взглянуть на него под сильным увеличением, взгляду откроется строгая структура — идеальная кристаллическая решетка из атомов кремния, совершенно однородная по всему объему.
Кристалл настолько прочен, что его вес может выдержать нить диаметром всего 3 миллиметра. Так что, готовую заготовку для процессоров вытягивают из тигля за тот самый затравочный кристалл.
Однако с «буля» обращаются аккуратнее, чем с антикварной вазой, кристалл выдерживает огромные нагрузки на разрыв, но чрезвычайно хрупок.
После химического и рентгеноскопического исследования для проверки чистоты кристалла и правильности молекулярной решетки, заготовку помещают в установку для резки кремния. Она разделяет кристалл на пластины толщиной около 1 миллиметра при помощи проволочной пилы с алмазным напылением.
Конечно, не обходится без повреждений. Какой бы острой ни была пила, после нарезки, на поверхности пластин остаются микроскопические дефекты. Так что за нарезкой следует этап полировки.
Но даже после обработки в мощной шлифовальной машине пластины кремния ещё недостаточно гладкие, чтобы пустить их на производство микрочипов. Поэтому полировку повторяют снова и снова уже с использованием химических реагентов.
В результате получается поверхность, по сравнению с которой, зеркало напоминает крупную наждачную бумагу. Такая пластина без разрывов и микродефектов становится основой для миллионов микроэлектронных устройств, образующих микросхему. Очищенные от пыли, кремниевые диски, которые принято называть «вэйфер» или «вафля» в герметичных контейнерах отправляются в чистую комнату.
В чистой комнате
В 1958 году изобретателю интегральной микросхемы Джеку Кирби удалось совершить прорыв, разместить на своей схеме один транзистор. В наши дни число логических элементов микропроцессора перевалило за миллиард и продолжает удваиваться каждые два года в соответствие с законом Мура.
Работа с такими микроскопическими деталями ставит перед изготовителями чипов серьезный вызов, поскольку даже единственная пылинка может погубить будущее изделие. Поэтому цеха площадью в пару тысяч квадратных метров, полностью изолируют от внешнего мира, оснащают сложнейшими системами очистки и кондиционирования воздуха, делающими его 10000 раз чище, чем в хирургической палате.
Все специалисты, работающие в такой чистой комнате, не просто соблюдают стерильность, но и носят защитные костюмы из антистатических материалов, маски, перчатки. И все же, несмотря на все предосторожности, чтобы уменьшить риск брака, компании-производители процессоров стараются автоматизировать максимум операций, производимых в чистой комнате, возложив их на промышленных роботов.
Процесс изготовления процессоров поставлен на конвейер. Доставленная в герметичном боксе идеально ровная «вэйфер» проходит через 400-500 технологических операций и выходит из цеха только спустя несколько месяцев уже в виде готового микрочипа.
Создание из «вафли» микрочипа подразумевает построение сложнейшей технологической цепочки, описать которую в деталях нет никакой возможности из-за ограничений на объемы статьи. Даже если бы их не было, компании вроде Intel и AMD вовсе не спешат делиться секретами производства. В конструкторских отделах компаний проектируются сложнейшие трехмерные схемы взаимного расположения элементов процессора — топологии микросхем. Они представляют собой многоуровневое нагромождение элементов, которое разделяется на слои и послойно наносится на кремниевую подложку. Делать это вручную, конечно же невозможно, слишком тонкий процесс, слишком мелкие элементы, буквально нанометрового размера.
Процессоры Intel восьмого поколения, известные под обозначением Coffee Lake, усеяны 14 нанометровыми транзисторами, AMD анонсировала второе поколение процессоров AMD Ryzen, известное под кодовым названием Pinnacle Ridge построенных на 12 нанометровых элементах. Новейшие видеокарты NVIDIA с архитектурой ядер Volta также построены по 12 нанометровой технологии. Система на чипе Qualcomm Snapdragon 835 еще миниатюрнее — всего 10 нанометров. Постоянно уменьшать размеры функциональных элементов процессора и, следовательно, увеличивать его производительность, удается благодаря совершенствованию технологии под названием фотолитография.
В общих чертах этот процесс можно описать следующим образом:
Сначала пластина кремния покрывается основой — материалом, которой должен будет стать частью будущей схемы, затем поверх равномерным слоем наносится химический реагент, чувствительный к свету. Этот состав выполнит всю работу, но суть позже.
Прежде из корпоративных архивов извлекается хранимая в строжайшем секрете подробная схема процессора. Ее нижний слой представляют в виде негатива и переносят на фотошаблон —защитную пластину, действующую подобно трафарету. Она значительно больше чипа, так что проходящий сквозь нее свет фокусируют при помощи сложной системы линз, уменьшая проецируемое изображение до нужного размера.
В тех местах, где свет не достигает кремния, пластина остается нетронутой, в освещенных он инициирует реакцию в химическом реагенте, меняющую его свойства. Затем будущий процессор обработают еще одним составом, и эти участки растворятся, оставив только те области, что не подвергались воздействию. Они-то и образуют токопроводящие логические элементы процессора.
После на пластину нанесут слой диэлектрика и поверх добавят новые компоненты процессора, опять же, при помощи фотолитографии.
Некоторые слои нагреваются, на некоторые воздействуют ионизированные плазмы, а другие покрываются металлом. Каждый тип обработки изменяет свойства слоя и медленно создает часть головоломки, формирующей конкретную модель чипа. В результате получается своеобразный слоёный пирог, где у каждого слоя своя функциональность и они связаны между собой сложным образом по средствам «дорожек» из атомов меди, которую осаживают на кремниевую подложку из раствора сульфата меди, пропуская через него электрический ток.
Это завершающий этап обработки, после которого микрочипы проверяют на работоспособность. Несмотря на все меры предосторожности и многодневные усилия процент брака остается высок. Роботы выберут и вырежут из кремниевой пластины только 100% работоспособные чипы.
Они будут рассортированы по показателям энергоэффективности, токам, и максимальным рабочим частотам, получат различные обозначения и, в конечном счете, будут проданы по различной цене.
Последние штрихи
На пути к покупателям процессоры покидают чистую комнату и отправляются на сборочную линию, где готовую микросхему приклеивают на квадрат, называемый подложкой. Кристалл спаивается с ней в специальной печи при температуре 360 градусов Цельсия.
Затем чип накрывается крышкой. Она служит и для защиты все еще хрупкого кремния от повреждений и для отвода от него тепла. Вы наверняка хорошо ее себе представляете, именно к крышке будет прижиматься основание системы охлаждения, будь то кулер или теплообменник СВО (системы водяного охлаждения). Это не менее ответственный этап, чем предыдущий. Ведь от того, насколько хорошо крышка процессора отводит тепло от кристалла во многом зависит стабильность и скорость его работы, его будущая максимальная производительность.
Старые процессоры Intel буквально припаивались к теплораспределительным крышкам. Однако последние поколения фирменных чипов получают прокладку-термоинтерфейс между кристаллом и крышкой и охлаждаются хуже, что очень огорчает энтузиастов компьютерного железа, желающих выжать максимум из своих приобретений. Дошло до того, что они «скальпируют» процессоры — самостоятельно снимают с них теплораспределитель и заменяют термоинтерфейс на более эффективный. Но не будем отвлекаться на хитрости оверклокинга, поскольку процессор еще не готов.
Завершающий этап — создание электрических контактов, которые свяжут микропроцессор с материнской платой компьютера. Обычно для этого изготавливают оловянные цилиндрики, так называемые «ножки» процессора, которые сначала приклеиваются, а затем припаиваются к подложке, где для них заранее предусмотрены места. Для микрочипов с большим количеством связей вместо ножек иногда используют мелкие оловянные шарики, так как они крепче и надежнее, однако в последнее время от них стали отказываться в пользу простых контактных площадок.
Законченный микрочип промывают в растворе воды с растворителем, чтобы удалить лишний флюс и грязь, а затем проводят финальную проверку качества проделанной работы. Это могут быть как стресс-тесты производительности, как в чистой комнате, так и более суровые испытания. Так, чипы, предназначающиеся для работы в экстремальных условиях, например, в космической и военной отраслях, помещаются герметичные в корпуса из керамики и многократно тестируются при экстремальных температурах в вакуумных камерах.
Затем, в зависимости от назначения микропроцессора, он отправляется прямо в руки покупателей, а затем в сокеты материнских плат, или на другие заводы, где маленький кремниевый кристалл займет свое место на компьютерной плате видеокарты, космического спутника, умного холодильника, а может быть попадет в корпус смартфона.
Для этого используется графический нагреватель.
Ошибочка, он ведь из графита, а не графики)
А я то лапух думал кремний в земле добывают) спасибо за статью!
P.S такой вот проц нашол на работе, продам не дорого)
От песка до процессора
Сложно в это поверить, но современный процессор является самым сложным готовым продуктом на Земле – а ведь, казалось бы, чего сложного в этом куске железа?
Как и обещал – подробный рассказ о том, как делают процессоры… начиная с песка. Все, что вы хотели знать, но боялись спросить )
Я уже рассказывал о том, «Где производят процессоры» и о том, какие «Трудности производства» на этом пути стоят. Сегодня речь пойдет непосредственно про само производство – «от и до».
Производство процессоров
Вкратце процесс изготовления процессора выглядит так: из расплавленного кремния на специальном оборудовании выращивают монокристалл цилиндрической формы. Получившийся слиток охлаждают и режут на «блины», поверхность которых тщательно выравнивают и полируют до зеркального блеска. Затем в «чистых комнатах» полупроводниковых заводов на кремниевых пластинах методами фотолитографии и травления создаются интегральные схемы. После повторной очистки пластин, специалисты лаборатории под микроскопом производят выборочное тестирование процессоров – если все «ОК», то готовые пластины разрезают на отдельные процессоры, которые позже заключают в корпуса.
Уроки химии
Давайте рассмотрим весь процесс более подробно. Содержание кремния в земной коре составляет порядка 25-30% по массе, благодаря чему по распространённости этот элемент занимает второе место после кислорода. Песок, особенно кварцевый, имеет высокий процент содержания кремния в виде диоксида кремния (SiO2) и в начале производственного процесса является базовым компонентом для создания полупроводников.
Первоначально берется SiO2 в виде песка, который в дуговых печах (при температуре около 1800°C) восстанавливают коксом:
Получившийся в результате водород можно много где использовать, но самое главное то, что был получен «электронный» кремний, чистый-пречистый (99,9999999%). Чуть позже в расплав такого кремния опускается затравка («точка роста»), которая постепенно вытягивается из тигля. В результате образуется так называемая «буля» — монокристалл высотой со взрослого человека. Вес соответствующий — на производстве такая дуля весит порядка 100 кг.
Слиток шкурят «нулёвкой» 🙂 и режут алмазной пилой. На выходе – пластины (кодовое название «вафля») толщиной около 1 мм и диаметром 300 мм (
12 дюймов; именно такие используются для техпроцесса в 32нм с технологией HKMG, High-K/Metal Gate). Когда-то давно Intel использовала диски диаметром 50мм (2″), а в ближайшем будущем уже планируется переход на пластины с диаметром в 450мм – это оправдано как минимум с точки зрения снижения затрат на производство чипов. К слову об экономии — все эти кристаллы выращиваются вне Intel; для процессорного производства они закупаются в другом месте.
Каждую пластину полируют, делают идеально ровной, доводя ее поверхность до зеркального блеска.
Производство чипов состоит более чем из трёх сотен операций, в результате которых более 20 слоёв образуют сложную трёхмерную структуру – доступный на Хабре объем статьи не позволит рассказать вкратце даже о половине из этого списка 🙂 Поэтому совсем коротко и лишь о самых важных этапах.
Итак. В отшлифованные кремниевые пластины необходимо перенести структуру будущего процессора, то есть внедрить в определенные участки кремниевой пластины примеси, которые в итоге и образуют транзисторы. Как это сделать? Вообще, нанесение различных слоев на процессорную подложу это целая наука, ведь даже в теории такой процесс непрост (не говоря уже о практике, с учетом масштабов)… но ведь так приятно разобраться в сложном 😉 Ну или хотя бы попытаться разобраться.
Фотолитография
— На кремниевую подложку наносят слой материала, из которого нужно сформировать рисунок. На него наносится фоторезист — слой полимерного светочувствительного материала, меняющего свои физико-химические свойства при облучении светом.
— Производится экспонирование (освещение фотослоя в течение точно установленного промежутка времени) через фотошаблон
— Удаление отработанного фоторезиста.
Нужная структура рисуется на фотошаблоне — как правило, это пластинка из оптического стекла, на которую фотографическим способом нанесены непрозрачные области. Каждый такой шаблон содержит один из слоев будущего процессора, поэтому он должен быть очень точным и практичным.
Иной раз осаждать те или иные материалы в нужных местах пластины просто невозможно, поэтому гораздо проще нанести материал сразу на всю поверхность, убрав лишнее из тех мест, где он не нужен — на изображении выше синим цветом показано нанесение фоторезиста.
Пластина облучается потоком ионов (положительно или отрицательно заряженных атомов), которые в заданных местах проникают под поверхность пластины и изменяют проводящие свойства кремния (зеленые участки — это внедренные чужеродные атомы).
Как изолировать области, не требующие последующей обработки? Перед литографией на поверхность кремниевой пластины (при высокой температуре в специальной камере) наносится защитная пленка диэлектрика – как я уже рассказывал, вместо традиционного диоксида кремния компания Intel стала использовать High-K-диэлектрик. Он толще диоксида кремния, но в то же время у него те же емкостные свойства. Более того, в связи с увеличением толщины уменьшен ток утечки через диэлектрик, а как следствие – стало возможным получать более энергоэффективные процессоры. В общем, тут гораздо сложнее обеспечить равномерность этой пленки по всей поверхности пластины — в связи с этим на производстве применяется высокоточный температурный контроль.
Так вот. В тех местах, которые будут обрабатываться примесями, защитная пленка не нужна – её аккуратно снимают при помощи травления (удаления областей слоя для формирования многослойной структуры с определенными свойствами). А как снять ее не везде, а только в нужных областях? Для этого поверх пленки необходимо нанести еще один слой фоторезиста – за счет центробежной силы вращающейся пластины, он наносится очень тонким слоем.
В фотографии свет проходил через негативную пленку, падал на поверхность фотобумаги и менял ее химические свойства. В фотолитографии принцип схожий: свет пропускается через фотошаблон на фоторезист, и в тех местах, где он прошел через маску, отдельные участки фоторезиста меняют свойства. Через маски пропускается световое излучение, которое фокусируется на подложке. Для точной фокусировки необходима специальная система линз или зеркал, способная не просто уменьшить, изображение, вырезанное на маске, до размеров чипа, но и точно спроецировать его на заготовке. Напечатанные пластины, как правило, в четыре раза меньше, чем сами маски.
Весь отработанный фоторезист (изменивший свою растворимость под действием облучения) удаляется специальным химическим раствором – вместе с ним растворяется и часть подложки под засвеченным фоторезистом. Часть подложки, которая была закрыта от света маской, не растворится. Она образует проводник или будущий активный элемент – результатом такого подхода становятся различные картины замыканий на каждом слое микропроцессора.
Собственно говоря, все предыдущие шаги были нужны для того, чтобы создать в необходимых местах полупроводниковые структуры путем внедрения донорной (n-типа) или акцепторной (p-типа) примеси. Допустим, нам нужно сделать в кремнии область концентрации носителей p-типа, то есть зону дырочной проводимости. Для этого пластину обрабатывают с помощью устройства, которое называется имплантер — ионы бора с огромной энергией выстреливаются из высоковольтного ускорителя и равномерно распределяются в незащищенных зонах, образованных при фотолитографии.
Там, где диэлектрик был убран, ионы проникают в слой незащищенного кремния – в противном случае они «застревают» в диэлектрике. После очередного процесса травления убираются остатки диэлектрика, а на пластине остаются зоны, в которых локально есть бор. Понятно, что у современных процессоров может быть несколько таких слоев — в таком случае на получившемся рисунке снова выращивается слой диэлектрика и далее все идет по протоптанной дорожке — еще один слой фоторезиста, процесс фотолитографии (уже по новой маске), травление, имплантация… ну вы поняли.
Характерный размер транзистора сейчас — 32 нм, а длина волны, которой обрабатывается кремний — это даже не обычный свет, а специальный ультрафиолетовый эксимерный лазер — 193 нм. Однако законы оптики не позволяют разрешить два объекта, находящиеся на расстоянии меньше, чем половина длины волны. Происходит это из-за дифракции света. Как быть? Применять различные ухищрения — например, кроме упомянутых эксимерных лазеров, светящих далеко в ультрафиолетовом спектре, в современной фотолитографии используется многослойная отражающая оптика с использованием специальных масок и специальный процесс иммерсионной (погружной) фотолитографии.
Логические элементы, которые образовались в процессе фотолитографии, должны быть соединены друг с другом. Для этого пластины помещают в раствор сульфата меди, в котором под действием электрического тока атомы металла «оседают» в оставшихся «проходах» — в результате этого гальванического процесса образуются проводящие области, создающие соединения между отдельными частями процессорной «логики». Излишки проводящего покрытия убираются полировкой.
Финишная прямая
Ура – самое сложное позади. Осталось хитрым способом соединить «остатки» транзисторов — принцип и последовательность всех этих соединений (шин) и называется процессорной архитектурой. Для каждого процессора эти соединения различны – хоть схемы и кажутся абсолютно плоскими, в некоторых случаях может использоваться до 30 уровней таких «проводов». Отдаленно (при очень большом увеличении) все это похоже на футуристическую дорожную развязку – и ведь кто-то же эти клубки проектирует!
Когда обработка пластин завершена, пластины передаются из производства в монтажно-испытательный цех. Там кристаллы проходят первые испытания, и те, которые проходят тест (а это подавляющее большинство), вырезаются из подложки специальным устройством.
На следующем этапе процессор упаковывается в подложку (на рисунке – процессор Intel Core i5, состоящий из CPU и чипа HD-графики).
Привет, сокет!
Подложка, кристалл и теплораспределительная крышка соединяются вместе – именно этот продукт мы будем иметь ввиду, говоря слово «процессор». Зеленая подложка создает электрический и механический интерфейс (для электрического соединения кремниевой микросхемы с корпусом используется золото), благодаря которому станет возможным установка процессора в сокет материнской платы – по сути, это просто площадка, на которой разведены контакты от маленького чипа. Теплораспределительная крышка является термоинтерфейсом, охлаждающим процессор во время работы – именно к этой крышке будут примыкать система охлаждения, будь то радиатор кулера или здоровый водоблок.
Сокет (разъём центрального процессора) — гнездовой или щелевой разъём, предназначенный для установки центрального процессора. Использование разъёма вместо прямого распаивания процессора на материнской плате упрощает замену процессора для модернизации или ремонта компьютера. Разъём может быть предназначен для установки собственно процессора или CPU-карты (например, в Pegasos). Каждый разъём допускает установку только определённого типа процессора или CPU-карты.
На завершающем этапе производства готовые процессоры проходят финальные испытания на предмет соответствия основным характеристикам – если все в порядке, то процессоры сортируются в нужном порядке в специальные лотки – в таком виде процессоры уйдут производителям или поступят в OEM-продажу. Еще какая-то партия пойдет на продажу в виде BOX-версий – в красивой коробке вместе со стоковой системой охлаждения.
The end
Теперь представьте себе, что компания анонсирует, например, 20 новых процессоров. Все они различны между собой – количество ядер, объемы кэша, поддерживаемые технологии… В каждой модели процессора используется определенное количество транзисторов (исчисляемое миллионами и даже миллиардами), свой принцип соединения элементов… И все это надо спроектировать и создать/автоматизировать – шаблоны, линзы, литографии, сотни параметров для каждого процесса, тестирование… И все это должно работать круглосуточно, сразу на нескольких фабриках… В результате чего должны появляться устройства, не имеющие права на ошибку в работе… А стоимость этих технологических шедевров должна быть в рамках приличия… Почти уверен в том, что вы, как и я, тоже не можете представить себе всего объема проделываемой работы, о которой я и постарался сегодня рассказать.
Ну и еще кое-что более удивительное. Представьте, что вы без пяти минут великий ученый — аккуратно сняли теплораспределительную крышку процессора и в огромный микроскоп смогли увидеть структуру процессора – все эти соединения, транзисторы… даже что-то на бумажке зарисовали, чтобы не забыть. Как думаете, легко ли изучить принципы работы процессора, располагая только этими данными и данными о том, какие задачи с помощью этого процессора можно решать? Мне кажется, примерно такая картина сейчас видна ученым, которые пытаются на подобном уровне изучить работу человеческого мозга. Только если верить стэнфордским микробиологам, в одном человеческом мозге находится больше «транзисторов», чем во всей мировой IT-инфраструктуре. Интересно, правда?
BONUS
Хватило сил дочитать до этого абзаца? ) Поздравляю – приятно, что я постарался не зря. Тогда предлагаю откинуться на спинку кресла и посмотреть всё описанное выше, но в виде более наглядного видеоролика – без него статья была бы не полной.
Эту статью я писал сам, пытаясь вникнуть в тонкости процесса процессоростроения. Я к тому, что в статье могут быть какие-то неточности или ошибки — если найдете что-то, дайте знать. А вообще, чтобы окончательно закрепить весь прочитанный материал и наглядно понять то, что было недопонято в моей статье, пройдите по этой ссылке. Теперь точно всё.
Успехов!