Крионирование людей что это
О крионике
Крионика это практика замораживания только что умерших людей (в идеале — еще находящихся в живом состоянии, но умирающих) при сверхнизких температурах и их хранения в жидком азоте. Крионика (заморозка людей) позволяет сохранять криопациентов до тех пор, пока уже зарождающиеся технологии медицины будущего не сделают реальным восстановление клеток, тканей, органов и как результат — всех функций организма.
Крионика (заморозка человека) — это научно обоснованная практика, соединяющая криобиологию, криогенную инженерию и практику клинической медицины.
Чтобы понять суть и возможности крионики надо внимательно рассмотреть следующие вопросы, которые сперва кажутcя простыми, но на самом деле, они требуют вдумчивого подхода.
1. Что такое жизнь?
1.1 Жизнь, клетки и тело человека.
Жизнь организма обеспечивается работой его органов: мозга, сердца, легких, печени и т.д. Органы состоят из тканей (нервной, мышечной, соединительной и т. п.), содержащих нервные, мышечные, кровяные и другие клетки. Так что жизнь это, прежде всего, жизнь клеток организма.
Согласно положениям современной биологии, жизнь не что иное как вид клеточной деятельности. Жизнеспособность организма в целом зависит от жизнеспособности его клеток. Клетка это главная единица, через которую происходит накопление, хранение и использование материи и энергии и сохранение, изменение и передача биологической информации. Эти биохимические функции клеток реализуются благодаря особым структурам, определяющим клеточное поведение.
1.2. Способ функционирования клетки.
Клетка состоит из клеточной мембраны, защищающей клетку от воздействия окружающей среды, внутриклеточных элементов (органелл), клеточного ядра, митохондрий и т.д. Мембрана состоит из двойного жирового слоя, покрытого молекулами белка. Органеллы состоят из белковых молекул, нуклеиновых кислот, жиров и т. п..
Строительные и питательные вещества и кислород проникают в клетку через ее мембрану, пронизывая своеобразные «поры», представляющие собой молекулы протеина. Внутри клетки протеиновые молекулы катализируют окислительные реакции, вырабатывая энергию, излишки которой откладываются в специальных молекулах. Затем белки используют полученную энергию в реакциях синтеза и распада молекул и других белков, включая белки, поддерживающие структуру клетки, нуклеиновые кислоты и др.
Обобщая, можно утверждать, что жизнь клетки это работа, прежде всего, молекул протеина по превращению поступающих извне питательных веществ и кислорода.
1.3. Разум и личность.
Согласно новейшим научным данным, существование индивида обеспечивается функционированием его мозга, в котором участвует множество церебральных структур, но в первую очередь — кора больших полушарий, управляющая сознанием и личностными особенностями индивида. Мозг это сложно структурированная совокупность нервных и других клеток мозга.
Процессы воспитания, образования, изменений личности отражаются на ее долговременной памяти. Следовательно, мозговая деятельность по сути — процесс записи и удаления информации, отложившейся в долговременной памяти.
1.4. Основы памяти.
Нейрон, главный элемент мозга и основная составляющая долговременной памяти, включает в себя тело клетки, дендриты, клеточные ответвления, специализирующиеся на приеме сигналов, исходящих от других нейронов или из внешней среды, и аксон, чье длинное и тонкое волокно, «вырастая» из тела клетки, делает нейрон самой длинной клеткой человеческого тела. Аксон, благодаря своей гибкой мембране, особо чутко воспринимает сигналы нейронов. Нейроны общаются посредством синаптических окончаний, своего рода отростков на краях аксонов. Бòльшая часть синапсов содержит специфическую химическую субстанцию, называемую нейромедиатором, вырабатывающуюся тогда, когда сигнал нейрона достигает синаптических окончаний. Нейромедиатор, достигнув синапса дендрита другого нейрона, стимулирует его продуцировать электрический импульс, посылаемый затем в клеточное тело другого нейрона. В результате подобной коммуникации структура нейронов и нейрональные связи постепенно меняются. В первую очередь, изменяется количество и расположение синапсов. Такая модификация составляет основу процесса обучения и долговременной памяти.
Итак, долговременная память определяется распределением синаптических связей между нейронами. То есть, чтобы сберечь информацию о личности, достаточно будет лишь сохранить информацию о нейронных связях в ее мозгу.
Смерть мозга, которая как раз и считается биологической смертью, наступает как только вышеописанный процесс подходит к концу и выявляется отсутствие рефлексов и биоэлектрической активности головного мозга. С помощью реанимационных мероприятий, проведенных в промежутке между клинической и биологической смертью, можно оживить человека.
Что касается клетки, обмен веществ в ней нарушается вследствие прекращения доступа кислорода и блокирования ее энергии в результате остановки окислительных процессов. Так клетка потихоньку начинает распадаться из-за воздействия тепла, изменения концентрации ионов по причине повреждения направляющих клетку протеинов, активности ферментов, склеивающих белки, запуска процессов саморазрушения клетки и т. д. Тем не менее, вышеозначенный процесс протекает довольно медленно и после прекращения работы организма в целом его клетки все еще живут, оставляя нам надежду, что однажды мы сможем вернуть организму каждую его клетку.
Смерть мозга ничем не отличается от смерти любого другого органа. Лишенные кислорода церебральные клетки начинают разрушаться. Но и после биологической смерти мозга, множество его клеток продолжают жить.Так, нервная клетка удерживает свою структуру в течение нескольких десятков часов после биологической смерти.
Смерть мозга ничем не отличается от смерти любого другого органа. Лишенные кислорода церебральные клетки начинают разрушаться. Но и после биологической смерти мозга, множество его клеток продолжают жить.Так, нервная клетка удерживает свою структуру в течение нескольких десятков часов после биологической смерти.
Итак, принципиальный вывод: стабилизация тонкой структуры (распределение нейронных связей) мозга в течение нескольких часов или даже нескольких десятков часов после биологической смерти дает нам надежду, что сохраненной информации будет достаточно, чтобы индивид возвратился к жизни при помощи медицины будущего.
2.4. Об относительности понятия «мертвый».
По мере развития реанимационных технологий все более и более возрастает вероятность того, что индивид, находящийся во второй фазе, вернется к жизни.
3. Что такое криостаз?
Криостаз это фиксация структуры тканей организма путем их заморозки при сверхнизких (криогенных) температурах. При проведении криостаза в тело человека через сердечно-сосудистую систему вводятся химические растворы, криопротекторы, призванные уменьшить повреждения тканей, полученные при замораживании. Затем постепенно охлажденное до температуры жидкого азота (-196 градусов по Цельсию) тело помещается в криостат (сосуд Дьюара), где может храниться без сколько-нибудь значимых изменений в течение сотен лет. Тем не менее, испарение жидкого азота время от времени требует его добавления в криостат, что делает криохранение криопациентов достаточно дорогостоящим.
4. Как будет проходить ревитализация?
Пока что мы не можем описать все технологии, которые в будущем будут применяться для реанимации криопациентов, однако научный прогресс позволяет конкретизировать наши представления об этих технологиях. Исходя из доступных нам на данный момент знаний, мы думаем, что возвращению к нам криопациентов послужат такие технологии как:
4.1. Нанотехнология и молекулярные роботы.
Молекулярные роботы размером с молекулу являются частью оборудования, разработанного нанотехнологами. Каждый такой бот снабжен миниатюрным вычислительным устройством и манипуляторами, способными производить операции на молекулярном уровне, сдвигая и меняя структуру молекул. Простейшим аналогом молекулярного робота является рибосома (клеточная органелла), строящая из аминокислот молекулу протеина, следуя программе, заданной молекулой РНК.
4.2. Возможный сценарий возрождения.
Возможный сценарий реанимации криопациентов, сегодня кажущийся наиболее вероятным, описан блестящими учеными Эриком Декслером и Марвином Мински в 9-ой главе их книги «Машины создания», называющейся «Дверь в будущее». Если вкратце, процесс воскрешения криопациентов в далеком будущем мы видим так:
В конце концов, нанороботы проведут лечение и омоложение клеток, возвращая к жизни молодый и здоровый организм.
Закончив свою работу, наноботы покинут возрожденное тело скажем по примеру вирусов, через кровеносную и дыхательную системы. Согласно последним научным данным, упомянутые выше процедуры могут занимать несколько месяцев, а технологии для их осуществления возможно будут разработаны через 50 лет. Это значит, что нужно сохранить криопациента в целости и сохранности по крайней мере в течение всего этого периода.
В случае нейрокриосохранения, перед тем как мозг криопациента будет реанимирован потребуется восстановить его тело, используя ДНК, к примеру, вырастив органы и ткани или же иным каким образом.
Количество научных публикаций, затрагивающих технические аспекты процесса ревитализации криопациентов, постоянно увеличивается. Выдающиеся нанотехнологи и американские популяризаторы крионики Ральф Меркль и Роберт Фрейтас составили список научных статей, посвященных вопросам оживления криопациентов.
Крионика
Подготовка к крионированию
Целью крионики является перенос только что умерших или терминальных (обречённых на смерть) пациентов в тот момент в будущем, когда, вероятно, станут доступны технологии репарации («ремонта») клеток и тканей и, соответственно, будет возможно восстановление всех функций организма. Такой технологией, по всей видимости, может стать нанотехнология и, в частности, разработанные в её рамках молекулярные нанороботы. Не исключено, что помимо реанимации крионированных пациентов, наномедицина позволит вылечить многие болезни и проявления старения в организме человека.
Содержание
История крионики
Распространенность коммерческой крионики
Из-за чрезвычайной дороговизны, отсутствия гарантии того, что технологии безопасного размораживания и лечения станут доступны в будущем, а также в силу противоречия общепринятым в обществе традициям умирания, крионика не пользуется высокой популярностью.
По данным от 1 июня 2009 года клиентами криофирм в США являются 1688 человек, крионировано 178 человек [6] [7]
Крионические компании
Отношение к крионике в научной среде
В настоящее время большинство специалистов положительно оценивают перспективы крионики.
…существует реальная возможность того, что криосохранение, совершённое сегодня в оптимальных условиях может сохранить нейрологическую информацию, достаточную для будущего восстановления человека до полностью здорового состояния.
Крионика в массовой культуре
Наиболее полное и строгое с научной точки зрения описание возможного воскрешения крионированных людей дано в романе Станислава Лема «Фиаско» (1987).
Философский и религиозный аспекты крионики
С точки зрения большинства религий после смерти душа покидает тело. В большинстве христианских религий человек после смерти попадает на Суд Божий и, вероятно, не может вернуться в тело из рая или ада (однако в самой Библии об этом речи не идёт). В буддийской же традиции человек после смерти выходит к перерождению и при размораживании старого тела также, вероятно, не сможет в него вернуться. По мнению некоторых эзоториков, в случаях «возвращения» после клинической смерти можно заметить, что душа человека покидает тело и возвращается в него только тогда, когда понимает что ей рано умирать. С точки зрения религиозной философии мозг правит телом, а мозгом правит душа. Из чего религиозные философы делают вывод, что если человека и воскресят, то он будет ходить чисто рефлекторно, не иметь души и к тому же не будет ощущать состояния собственного Я.
Некоторые известные клиенты криофирм
Крионированные
подписали контракт на собственную заморозку
публично высказывавшиеся о своем желании быть крионированными
Цитаты
Я хотел бы, чтобы было возможно… изобрести метод бальзамирования утонувших людей, таким образом, что они могли бы быть возвращены к жизни в любой момент, сколь угодно отдаленный; из-за огромного желания видеть и наблюдать государство Америки сто лет спустя, я бы предпочел обычной смерти быть погруженным с несколькими друзьями в бочку Мадеры до тех пор, и тогда быть возращенным к жизни солнечным теплом моей дорогой страны! Но… по всей вероятности, мы живем в век слишком слабо продвинутый, и слишком близкий к детству науки, чтобы видеть такое умение, доведенное в наше время до совершенства…
Литература
Ссылки
См. также
Примечания
Научное обоснование практики крионики
Scientific Justification of Cryonics Practice, Бенджамин Бест (Benjamin P. Best),
(Институт крионики, Клинтон Тауншип, шт. Мичиган, США)
Тезисы
Общие сведения о крионике
Охлаждение
Сохранение продуктов в холодильниках и морозильных камерах основано на снижении скорости биохимических реакций при понижении температуры. Охлаждение снижает уровень метаболизма (и, в конечной счёте, фактически останавливает его), что и является принципом, на котором основана крионика. Начальное охлаждение непосредственно после официального объявления смерти осуществляется в ванне с водой со льдом. Применение системы искусственного кровообращения и дыхания, использующей периодическое сжатие также ускоряют охлаждения за счёт отбора тепла циркулирующей кровью.
Пациент охлаждается конвективным способом. Метод основан на комбинации теплопроводности с быстрым отведением тепла от поверхности охлаждаемого предмета быстро циркулирующей жидкостью либо газом. При конвекции объект (в данном случае криопациент) охлаждается текучей средой (жидкостью или газом), и текучая среда уносит тепло с прилежащего к объекту слоя. При охлаждении человеческого тела (37ºC) до температуры 10ºC применение быстро циркулирующей ледяной воды намного более эффективно, чем использование пакетов со льдом или ванн без циркуляции.
При отсутствии кровообращения в условиях пониженной температуры в тканях тела необратимые изменения наступают значительно позже. Сообщалось о большом количестве случаев выживания с полным восстановлением нормальной нервной деятельности после остановки сердца в течение от 20 минут до часа и более (особенно у детей) в условиях гипотермии, например при утопании в холодной воде [1,2]. Уровень метаболизма при охлаждении значительно падает.
Как было показано в опытах на песчанках, длительность ишемии, приводящей к повреждению 50% нейронов, растёт экспоненциально при снижении температуры мозга с 37ºC до 31ºC [3]. Шесть из шести собак, введенных в гипотермическое состояние до температуры (измеряемой на барабанной перепонке) 10ºC, показали полное восстановление без какого-либо повреждения нервной системы после 90-минутной остановки сердца; две из семи перенесли аналогичное состояние в течение 120 минут без видимого нарушения нервной деятельности [4]. Пациентов погружают в гипотермическое состояние с остановкой сердца более чем на час для операций на аорте без ощутимого ущерба для нервной системы. Люди, испытавшие состояние электрического молчания мозга (нулевой биспектральный индекс на ЭЭГ) при температурах между 16ºC и 24ºC [5], возвращаются в нормальное состояние без ущерба для нервной системы, что подтверждает возможность утраты и восстановления динамической активности мозга без потери личности.
Отношение между скоростью химической реакции (k) (включая процессы обмена и ишемического повреждения тканей) и температурой (T) может быть описано уравнением Аррениуса [8]
Для двух различных температур, T1 и T2, будет различной и зависимость скорости реакции от температуры, k1 и k2:
Вычитание ln k2 из ln k1 дает уравнение первой степени с четырьмя переменными:
которое может быть упрощено до:
или
Скорость ферментативных реакций при различных температурах дает хорошее приближение зависимости между температурой и уровнем метаболизма. Лактатдегидрогеназа мышц кролика с энергией активации (Ea) 13100 калорий/моль[9] может рассматриваться как типичный фермент. Одна термохимическая калория равна 4.184 Джоуля, что дает 54810 Джоулей/моль.
Сравнение скорости протекания реакции (k1) для лактатдегидрогеназы при 40ºC (313 Кельвинов) (T1) со скоростью реакции (k2) при 30ºC (303 Кельвина) (T2) дает:
Если взять лактатдегидрогеназу как типичный фермент, то скорость метаболизма при 37ºC будет в 18 раз выше чем при 0ºC. Экспериментально наблюдался уровень окислительного фосфорилирования при 4ºC составлявший 1/20 от такового при 37ºC [11], что приблизительно соответствует вычисленному.
Витрификация и криогенное хранение
Витрификация является затвердеванием в аморфное (стеклоподобное) состояние, отличающиеся от кристаллического льда. Известным примером витрифицированного (аморфного, акристаллического) твёрдого вещества является янтарь. Чистая вода может витрифицироваться при охлаждении со скоростью не меньшей, чем три миллиона Кельвинов за секунду [18], подобная скорость для тканей животных является недостижимой. Сахарозу можно охладить достаточно быстро, чтобы она витрифицировалась в «сахарную вату», но более медленное охлаждение приведёт к образованию кристалла сахара. Добавление кукурузного сиропа в сахарозу позволяет её охлаждать в используемое в леденцах акристаллическое твёрдое состояние медленно. Диоксид кремния можно охладить достаточно быстро, чтобы образовалось витрифицированное кварцевое стекло, при медленном же охлаждении образуется его кристаллическая форма (кварц). Бытовое стекло производится с добавлением в диоксид кремния оксидов натрия и кальция, что позволяет охлаждать постепенно загустевающий расплав достаточно медленно с образованием аморфного (акристаллического) твёрдого вещества. Несмотря на отсутствие фазового перехода из жидкого в кристаллическое состояние при температуре плавления/кристаллизации, витрификация сопровождается значительным увеличением вязкости вещества (называемым затвердеванием), которое происходит при температуре стеклования (Tg), что определяется скоростью охлаждения.
Наиболее часто используемые криопротекторы включают в себя диметилсульфоксид (ДМСО), а также полиолы этиленгликоль (автомобильный антифриз), пропилен гликоль (ранее использовавшийся как добавка против образования ледяных кристаллов в мороженом) и глицерин (используется с 1950-х годов для криоконсервирования спермы и клеток крови). Все эти соединения способны к созданию водородных связей с молекулами воды, что препятствует их организации в лед. Эти криопротекторы также препятствуют формированию молекулярной решётки льда благодаря коллигативному эффекту. Смеси криопротекторов могут быть менее токсичны, чем чистые криопротекторы, и могут полностью устранить льдообразование. Использование блокаторов льда (не криопротекторов, таких как препятствущие замораживанию протеины, которые химически блокируют рост кристаллов льда) в витрификационные смеси может еще больше снизить токсичность и концентрации, необходимых для витрификации [19].
Трудность достижения достаточно высокой концентрации криопротекторов для ликвидирования льдообразования, одновременно минимизируя повреждений от токсичности криопротекторов, и является ограничивающим фактором, препятствующим лучшему восстановлению биологических систем после криоконсервации. Быстрое охлаждение может позволить использование более низкие концентрации криопротекторов для предотвращения льдообразования, но быстрое охлаждение становится затрудненным с увеличением объёма тканей. Токсичность криопротекторов снижается при низких температурах, и использование менее вязких смесей криопротекторов позволяет увеличить скорость проникновения их в ткани и, тем самым, сократить время воздействия криопротекторов на ткани при более высоких температурах до охлаждения.
Витрифицированные и криосохраненные ткани оцениваются как по жизнестойкости, так и по ультраструктуре. Для измерения жизнеспособности часто используется внутриклеточное соотношение ионов K+/Na+, хотя в будущем могут оказаться полезными и другие методы (такие как измерение концентрации АТФ в клетке). Натриевый насос, поддерживающий трансмембранный потенциал, не будет функционировать без связывания с АТФ и Na+ внутри клеточной мембраны и K+ вовне. Хотя клетка может поддерживать трансмембранный потенциал в течение нескольких часов и с нефункционирующим натриевым насосом, после этого протекание Na+ внутрь клетки и сопутствующее вытекание K+ из клетки приведут к полной потере трансмембранного потенциала. Аналогично, если клетка погибает в том смысле, что она более неспособна производить АТФ в митохондриях, то и натриевый насос прекратит работу. Таким образом, нормальное внутриклеточное соотношение K+/Na+ показывает как нормальное функционирование натриевых насосов, так и целостность клеточных мембран.
Для сохранения почки кролика использовался витрификационный раствор M22. M22 также применяется для витрификации крионируемых пациентов организацией Алькор. Показано, что перфузии кроликов раствором M22 сохраняет ультраструктуру мозга без образования льда [26].
«Обратимая смерть»?
Реперфузионными повреждениями называются повреждения в тканях, связанные с восстановлением кровотока после ишемического периода продолжительностью около 20 минут и больше. Возобновление поступления крови после длительного периода ишемии инициирует воспалительные процессы и заставляет кислород формировать токсичные свободные радикалы (активные формы кислорода), такие, как супероксид [33]. Порождаемый при участии ксантиноксидоредуктазы супероксид повреждает эндотелий гораздо сильнее, чем паренхиму [34]. В условиях воспаления, которые имеют место при реперфузии, адаптивные синтетазы оксида азота могут увеличить концентрацию оксида азота в тысячи раз по сравнению с нормальным уровнем [35]. Во время реперфузии аномально высокое количество супероксида превращает почти весь имеющийся оксид азота в пероксинитрит, который, как считается, является причиной большинства повреждений эндотелиальных клеток капилляров мозга [36].
Несмотря на повреждающее действие эксайтотоксичности [37], структура мозга обычно сохраняется после смерти гораздо дольше, чем обычно считается. После шестичасовой остановки кровотока (ишемии головного мозга) в коре головного мозга крыс некротизировалось только 15% нейронов. Большая часть нейронов (65%) не некротизировалась до двенадцатичасовой отметки после остановки кровотока [38]. Нейроны, отобранные во время аутопсии головного мозга пожилых людей, умерших в среднем за 2.6 часа до аутопсии, после двухнедельного хранения вне тела показывали жизнеспособность 70-90% [39].
Одной из причин, по которой в настоящее время более шести минут остановки сердца ведут к неврологическим повреждениям, является тот факт, что ишемия запускает процесс саморазрушения нейронов (апоптоз), который занимает много часов. Однако уже скоро могут быть созданы методы предупреждения апоптоза. Нейроны в секторе CA1 гиппокампа намного более уязвимы к отмиранию вследствие ишемии, чем нейроны в любой другой части мозга [40]. Но количество отмирающих клеток в гиппокампе после ишемии может быть существенно снижено при использовании ингибиторов каспаз, которые останавливают процесс апоптоза [41]. Ингибиторы каспаз также использовались для остановки апаптоза в криосохраненных и размороженных гематопоэтических (кроветворных) клетках [42]. Протеин Bag-1, который связывает про-апоптические протеины семейства Bcl-2 показал мощный анти-апоптический эффект на печени крыс, подвергшихся повреждению от ишемии/реперфузии [43].
Большинство нейробиологов согласны, что анатомическая основа разума закодирована в физических структурах мозга, в особенности, в сетях нейропилей и в силе синаптических соединений [44] и, возможно, в эпигенетической структуре нейронов [45]. Тот факт, что даже полное отсутствие электрической активности в мозгу не делает полное неврологическое восстановление пациента невозможным [45, 46], поддерживает предположение о том, что основа сознания носит структурный, а не динамический характер, а значит, может быть сохранена при криогенных температурах.
Значительное восстановление коры головного мозга после инсульта может быть связано с избыточностью в хранении информации головным мозгом [47, 48, 49]. Восстановление головного мозга от вызванных ишемией, токсинами или криоконсервацией травм потенциально может быть усилено терапией нейрональными стволовыми клетками [50]. Данные соображения увеличивают допустимую величину повреждений, которые могут быть нанесены при хранении человека в крионических субоптимальных условиях.
Традиционная крионика стремится к минимизации повреждений и уменьшению зависимости от молекулярных восстановительных технологий будущего. Во многих случаях у криопациентов период после остановки сердца, длился менее минуты, после чего кровообращение было восстановлено. Свидетельства того, что неврологическая основа сознания сохраняется значительно дольше шестиминутного предела даёт надежду, что молекулярная медицина, направленная на лечение апоптоза и восстановления повреждённых кровеносных сосудов, может помочь восстановить жизнеспособность крионических пациентов, которым не помогло доступное сейчас лечение. Маловероятно то, что крионика бесполезна после шестиминутной остановки кровообращения. Гибель множества тканей наступает лишь по прошествии нескольких часов после остановки сердца.
В идеальном случае в мозгу криопациента практически не образовывается кристаллов льда. Починка витрифицированных тканей мозга, получивших небольшие ишемические повреждения, может быть произведена при температурах выше криогенных одновременно с излечением болезней и омоложением.
Хотя существует обоснованная правовая необходимость обозначить чёткую границу между жизнью и смертью, с биологической и физиологической точек зрения правильнее говорить о непрерывном диапазоне состояний, а не о простой дихотомии. Сознание постоянно развивается, проходя через стадии эмбриона, плода, ребенка, взрослого и может постепенно деградировать из-за неврологических заболеваний. После остановки сердца структура мозга разрушается в течение нескольких часов или дней, со скоростью, зависящей от температуры. Не-дихотомичность состояний мозга станет очевидна для оживляемых криопациентов, чьи мозги были частично разрушены, затем восстановлены. Результатом такой процедуры может быть частичная амнезия и неполнота восстановления исходной личности.
Крионические процедуры
Криопроцедуры обычно производятся только с людьми, которые заранее имели контрактные и финансовые договорённости с крио-организациями (например, Фонд продления срока жизни Алькор, Американское сообщество Крионики или Институт Крионики). При оптимальных условиях подвергающийся крионированию человек будет объявлён юридически мертвым очень быстро после остановки сердца. Лишь после официального призания факта смерти могут быть начаты криопроцедуры.
Как только произошла остановка сердца и факт смерти был юридически зафиксирован, пациенту вводят препараты для поддержания седации, снижения мозгового метаболизма, предотвращения/обращения свертывания крови, повышения кровяного давления, стабилизации рН от ацидоза, а также защиты от повреждений при ишемии/реперфузии.
Во время процедуры сердечно-лёгочной поддержки с применением ACDC сам пациент находится в ванне с циркулирующей ледяной водой. Охлаждение в воде происходит намного быстрее, чем на воздухе[16], а в проточной воде намного быстрее, чем в стоячей, согласно закону охлаждения Ньютона. Охлаждение криопациента значительно ускоряется из-за циркуляции крови, вызванного сердечно-лёгочной поддержкой с ACDC.
После того, как температура тела криопациента будет снижена до менее чем 10ºC, может быть начато проведение перфузии витрифицирующим раствором. Витрификация головного мозга с использованием криопротектора занимает значительно больше времени, чем это необходимо для витрификации срезов гиппокампа. Криопротекторы токсичны, соответственно, их токсическое действие на ткани головного мозга возрастает с увеличением времени обработки. Однако, крупные органы не могут быть охлаждены со скоростью, применяемой для охлаждения срезов тканей, что означает необходимость применения более высоких концентраций криопротекторов для предупреждения образования льда.
Криопациенты хранятся в похожих на термос контейнерах, наполненных жидким азотом. Этот метод экономен и независим от электричества (не так уязвим к отключениям электроэнергии).
Наука и косвенные доказательства
Никто никогда не видел ядро Земли. Были созданы модели состояния Вселенной в первую миллионную долю секунды после Большого Взрыва. Ученые описывают будущее состояние Земли после многих лет глобального потепления. Существуют модели, описывающие распад ядерных отходов в течение сотен тысяч лет, и на эти модели опираются при разработке методов хранения отходов. Высадка человека на Луну косвенно доказывает возможность будущих управляемых полетов и высадки человека на Марсе.
Если существуют потенциально возможные модели для восстановления и реанимации криоконсервированных пациентов [64, 65], то кажется разумным опираться на них при принятии решений в отношении криоконсервации как долгосрочного лечения, которое может или не может добиться успеха. Ждать до тех пор, пока криоконсервированное млекопитающее будет реанимировало, прежде чем криоконсервировать людей, может означать, что жизнь многих людей будет потеряна. Это всё равно, что ожидать десятки или сотни тысяч лет, чтобы убедиться, что ядерные отходы могут быть захоронены, прежде чем захоранивать их. Существуют косвенные доказательства в поддержку утверждения, что оживление криоконсервированных млекопитающих не является существенным для научного обоснования крионической практики.
Заключение
Низкая температура замедляет биологическое время, практически останавливая его при температуре жидкого азота. Криопротекторы значительно снижают ущерб, причиняемый криоконсервацией тканей, а эффективная виртификация может полностью предотвратить образование льда. Токсичность криопротекторов, скорее всего наносит лишь обратимые повреждения, кроме того, продолжают появляться всё менее токсичные средства криоконсервации. Применительно к человеку и животным, криоконсервация позволяет обеспечить стабильного биологического состояния, которое принципиально обратимо.
Предположение, что старение является болезнью, которую можно лечить и, возможно, в конечном итоге обратить вспять (омоложение), основывается на общем понимании того, что старение состоит из множества конкретных патологий на клеточном и молекулярном уровнях, которые можно изучать, понимать, и исправлять с помощью создаваемых в обозримом будущем инструментов. Патологии, вызванные глобальной церебральной ишемией (клинической смертью), процессом криоконсервации, а также неизлечимыми в настоящее время заболеваниями, также поддаются анализу и возможному восстановлению в будущем. Если повреждения от старения могут быть исправлены когда-то в будущем, разумно полагать, что повреждения от криопроцедур также могут быть исправлены. И если повреждения от старения могут быть исправлены в будущем, то крионика может оказаться единственным для многих живущих сегодня людей способом, позволяющим получить в своё распоряжение медицинские технологии будущего, которые смогут вылечить пока неизлечимые заболевания и провести омоложение.