Космическая радиация что это
Космическая радиация: что это такое и насколько опасно
Орбиту Международной космической станции несколько раз поднимали, и сейчас ее высота составляет более 400 км. Это делалось для того, чтобы увести летающую лабораторию от плотных слоев атмосферы, где молекулы газов еще довольно заметно тормозят полет и станция теряет высоту. Чтобы не корректировать орбиту слишком часто, хорошо бы поднять станцию еще выше, но делать этого нельзя. Примерно в 500 км от Земли начинается нижний (протонный) радиационный пояс. Длительный полет внутри любого из радиационных поясов (а их два) будет гибельным для экипажей.
Космонавт-ликвидатор
Тем не менее нельзя сказать, что на высоте, на которой сейчас летает МКС, проблемы радиационной безопасности нет. Во-первых, в районе Южной Атлантики существует так называемая Бразильская, или Южно-Атлантическая, магнитная аномалия. Здесь магнитное поле Земли как бы провисает, а с ним ближе к поверхности оказывается нижний радиационный пояс. И МКС его все-таки касается, пролетая в этом районе.
Во-вторых, человеку в космосе угрожает галактическое излучение – несущийся со всех направлений и с огромной скоростью поток заряженных частиц, порожденных взрывами сверхновых или деятельностью пульсаров, квазаров и других аномальных звездных тел. Часть этих частиц задерживается магнитным полем Земли (что является одним из факторов формирования радиационных поясов), другая часть теряет энергию в столкновении с молекулами газов в атмосфере. Что-то долетает и до поверхности Земли, так что небольшой радиоактивный фон присутствует на нашей планете абсолютно везде. В среднем проживающий на Земле человек, не имеющий дела с источниками радиации, ежегодно получает дозу в 1 миллизиверт (мЗв). Космонавт на МКС зарабатывает 0,5–0,7 мЗв. Ежедневно!
«Можно привести интересное сопоставление, – говорит заведующий отделом радиационной безопасности космонавтов Института медико-биологических проблем РАН, кандидат физико-математических наук Вячеслав Шуршаков. – Допустимой ежегодной дозой для сотрудника АЭС считаются 20 мЗв – в 20 раз больше, чем получает обычный человек. Для специалистов по ликвидации аварий, этих особым образом подготовленных людей, максимальная годовая доза составляет 200 мЗв. Это уже в 200 раз больше по сравнению с обычной дозой и. практически столько же, сколько получает космонавт, проработавший год на МКС».
В настоящее время медициной установлена максимальная предельная доза, которую в течение жизни человеку превышать нельзя во избежание серьезных проблем со здоровьем. Это 1000 мЗв, или 1 Зв. Таким образом, даже работник АЭС с его нормативами может спокойно трудиться лет пятьдесят, ни о чем не беспокоясь. Космонавт же исчерпает свой лимит всего за пять лет. Но, даже налетав четыре года и набрав свои законные 800 мЗв, он уже вряд ли будет допущен в новый полет годичной продолжительности, потому что появится угроза превышения лимита.
«Еще одним фактором радиационной опасности в космосе, – объясняет Вячеслав Шуршаков, – является активность Солнца, особенно так называемые протонные выбросы. В момент выброса за короткое время космонавт на МКС может получить дополнительно до 30 мЗв. Хорошо, что солнечные протонные события происходят редко – 1–2 раза за 11-летний цикл солнечной активности. Плохо, что эти процессы возникают стохастически, в случайном порядке, и плохо поддаются прогнозированию. Я не помню такого, чтобы мы были бы заранее предупреждены нашей наукой о грядущем выбросе. Обычно дело обстоит по-другому. Дозиметры на МКС вдруг показывают повышение фона, мы звоним специалистам по Солнцу и получаем подтверждение: да, наблюдается аномальная активность нашего светила. Именно из-за таких внезапно возникающих солнечных протонных событий мы никогда точно не знаем, какую именно дозу привезет с собой космонавт из полета».
Частицы, сводящие с ума
Радиационные проблемы у экипажей, отправляющихся на Марс, начнутся еще у Земли. Корабль массой 100 или более тонн придется долго разгонять по околоземной орбите, и часть этой траектории пройдет внутри радиационных поясов. Это уже не часы, а дни и недели. Дальше – выход за пределы магнитосферы и галактическое излучение в его первозданной форме, много тяжелых заряженных частиц, воздействие которых под «зонтиком» магнитного поля Земли ощущается мало.
«Проблема в том, – говорит Вячеслав Шуршаков, – что влияние частиц на критические органы человеческого организма (например, нервную систему) сегодня мало изучено. Возможно, радиация станет причиной потери памяти у космонавта, вызовет ненормальные поведенческие реакции, агрессию. И очень вероятно, что эти эффекты не будут привязаны к конкретной дозе. Пока не накоплено достаточно данных по существованию живых организмов за пределами магнитного поля Земли, отправляться в длительные космические экспедиции очень рискованно».
Когда специалисты по радиационной безопасности предлагают конструкторам космических аппаратов усилить биозащиту, те отвечают, казалось бы, вполне рациональным вопросом: «А в чем проблема? Разве кто-то из космонавтов умер от лучевой болезни?» К сожалению, полученные на борту даже не звездолетов будущего, а привычной нам МКС дозы радиации хоть и вписываются в нормативы, но вовсе не безобидны. Советские космонавты почему-то никогда не жаловались на зрение – видимо, побаиваясь за свою карьеру, но американские данные четко показывают, что космическая радиация повышает риск катаракты, помутнения хрусталика. Исследования крови космонавтов демонстрируют увеличение хромосомных аберраций в лимфоцитах после каждого космического полета, что в медицине считается онкомаркером. В целом сделан вывод о том, что получение в течение жизни допустимой дозы в 1 Зв в среднем укорачивает жизнь на три года.
Намочите полотенца!
«Мы, специалисты в области радиационной безопасности, – говорит Вячеслав Шуршаков, – настаиваем на том, чтобы защита экипажей была усилена. Например, на МКС наиболее уязвимыми являются каюты космонавтов, где они отдыхают. Там нет никакой дополнительной массы, и от открытого космоса человека отделяет лишь металлическая стенка толщиной в несколько миллиметров. Если приводить этот барьер к принятому в радиологии водному эквиваленту, это всего лишь 1 см воды. Для сравнения: земная атмосфера, под которой мы укрываемся от излучения, эквивалентна 10 м воды. Недавно мы предложили защитить каюты космонавтов дополнительным слоем из пропитанных водой полотенец и салфеток, что намного бы снизило действие радиации. Разрабатываются медикаментозные средства для защиты от излучения – правда, на МКС они пока не используются. Возможно, в будущем методами медицины и генной инженерии мы сможем усовершенствовать тело человека таким образом, чтобы его критические органы были более устойчивыми к факторам радиации. Но в любом случае без пристального внимания науки к этой проблеме о дальних космических полетах можно забыть».
50 лет назад один человек совершил маленький шажок, который оказался большим шагом для всего человечества. Мы говорим, как вы поняли, о знаменитой высадке американских астронавтов на Луну. И в последнее время споры вокруг той миссии (как и самой программы «Аполлон») разгорелись с новой силой. Причем речь идет не о том, что «высадки не было и все было снято в павильоне». Новые аргументы говорят нам, что во время миссии на Луну астронавты должны были получить огромную дозу космической радиации, которую невозможно пережить. Но так ли это?
Что такое космическая радиация
Никто не собирается оспаривать факт того, что космическая радиация действительно существует и то, что воздействие ее на живые организмы очень сложно назвать положительным. Сам термин «космическая радиация» довольно обширен и используется для описания энергии, которая излучается в виде электромагнитных волн и/или других частиц, испускаемых небесными телами. При этом не все они являются опасными для человека. Например, люди могут воспринимать некоторые формы электромагнитного излучения: видимый свет можно (простите за тавтологию) увидеть, а инфракрасное излучение (тепло) можно почувствовать.
Между тем, другие разновидности излучения, такие как радиоволны, рентгеновские и гамма-лучи требуют специального оборудования для наблюдения. Самым опасным является ионизирующее излучение и именно его воздействие в большинстве случаев и называют той самой космической радиацией.
Откуда берется космическая радиация
В космосе существует несколько источников ионизирующего излучения. Солнце непрерывно испускает электромагнитное излучение на всех длинах волн. Иногда огромные взрывы на солнечной поверхности, известные как вспышки на Солнце, высвобождают в космос огромное количество рентгеновских и гамма-лучей. Эти явления как раз и могут представлять опасность для астронавтов и оборудования космических аппаратов. Также опасная радиация может исходить из-за пределов нашей Солнечной системы, но на Земле мы защищены от большей части этого ионизирующего излучения. Сильное магнитное поле Земли формирует магнитосферу (грубо говоря, защитный пузырь), который действует как своего рода «щит», блокирующий большую часть опасного излучения.
При этом космическая радиация «не улетает» обратно в космос. Она накапливается вокруг нашей планеты, формируя, так называемые, Пояса Ван Аллена (или радиационные пояса).
Как NASA решило проблему организации полета на Луну
Короткий ответ — никак. Дело в том, что для того, чтобы добраться до Луны, космический аппарат должен двигаться максимально быстро и по кратчайшему расстоянию. Для «облета и маневрирования» не хватило бы ни времени, ни запаса горючего. Таким образом, участники программы должны были пересечь как внешний, так и внутренний радиационный пояса.
NASA знало о проблеме и поэтому им нужно было что-то делать с обшивкой корабля для астронавтов. Обшивка должна была быть тонкой и легкой для обеспечения защиты. Нельзя было слишком «утяжелять» ее. Поэтому минимальная защита от облучения при помощи металлических пластин была добавлена в конструкцию. Более того, теоретические модели радиационных поясов, разработанные в преддверии полетов «Аполлона», показали, что прохождение через них не будет представлять существенной угрозы для здоровья космонавтов.
Но это еще не все. Чтобы добраться до Луны и благополучно вернуться домой, астронавты «Аполлона» должны были не только пересечь пояса Ван Аллена, но и огромное расстояние между Землей и Луной. По времени полет занимал около трех дней в каждую сторону. Участники миссии также должны были безопасно работать на орбите вокруг Луны и на лунной поверхности. Во время миссий «Аполлон» космический аппарат большую часть времени находился за пределами защитной магнитосферы Земли. Таким образом, экипажи «Аполлонов» были уязвимы для солнечных вспышек и для потока радиационных лучей из-за пределов нашей Солнечной системы.
Почему астронавты остались живы?
Можно сказать, что NASA повезло, ведь время миссии совпало с, так называемым, «солнечным циклом». Это период роста и спада активности, который происходит примерно каждые 11 лет. На момент запуска аппаратов как раз пришелся период спада. Однако если бы космическое агентство затянуло программу, то все могло бы закончится иначе. Например, в августе 1972 года, между возвращением на Землю «Аполлона-16» и запуском «Аполлона-17» начался период роста солнечной активности. И если бы в это время астронавты находились бы на пути к Луне, они получили бы огромную дозу космического излучения. Но этого, к счастью, не произошло.
Обсудить эту и другие новости вы можете в нашем чате в Телеграм.
Космическая радиация: что это такое и опасно ли для человека?
Космическая радиация: что это такое и опасно ли для человека?
Земля — уникальная колыбель всего живого. Защищенные ее атмосферой и магнитным полем, мы можем не думать о радиационных угрозах, кроме тех, что творим собственными руками. Однако все проекты освоения космоса — ближнего и дальнего — неизменно упираются в проблему радиационной безопасности. Космос враждебен жизни. Нас там не ждут.
Орбиту Международной космической станции несколько раз поднимали, и сейчас ее высота составляет более 400 км. Это делалось для того, чтобы увести летающую лабораторию от плотных слоев атмосферы, где молекулы газов еще довольно заметно тормозят полет и станция теряет высоту. Чтобы не корректировать орбиту слишком часто, хорошо бы поднять станцию еще выше, но делать этого нельзя. Примерно в 500 км от Земли начинается нижний (протонный) радиационный пояс. Длительный полет внутри любого из радиационных поясов (а их два) будет гибельным для экипажей.
Космонавт-ликвидатор
Тем не менее нельзя сказать, что на высоте, на которой сейчас летает МКС, проблемы радиационной безопасности нет. Во‑первых, в районе Южной Атлантики существует так называемая Бразильская, или Южно-Атлантическая, магнитная аномалия. Здесь магнитное поле Земли как бы провисает, а с ним ближе к поверхности оказывается нижний радиационный пояс. И МКС его все-таки касается, пролетая в этом районе.
Во-вторых, человеку в космосе угрожает галактическое излучение — несущийся со всех направлений и с огромной скоростью поток заряженных частиц, порожденных взрывами сверхновых или деятельностью пульсаров, квазаров и других аномальных звездных тел. Часть этих частиц задерживается магнитным полем Земли (что является одним из факторов формирования радиационных поясов), другая часть теряет энергию в столкновении с молекулами газов в атмосфере. Что-то долетает и до поверхности Земли, так что небольшой радиоактивный фон присутствует на нашей планете абсолютно везде. В среднем проживающий на Земле человек, не имеющий дела с источниками радиации, ежегодно получает дозу в 1 миллизиверт (мЗв). Космонавт на МКС зарабатывает 0,5−0,7 мЗв. Ежедневно!
Радиационные поясаРадиационные пояса Земли представляют собой области магнитосферы, в которых накапливаются высокоэнергетичные заряженные частицы. Внутренний пояс состоит преимущественно из протонов, внешний — из электронов. В 2012 году спутником NASA был открыт еще один пояс, который находится между двумя известными.
«Можно привести интересное сопоставление, — говорит заведующий отделом радиационной безопасности космонавтов Института медико-биологических проблем РАН, кандидат физико-математических наук Вячеслав Шуршаков. — Допустимой ежегодной дозой для сотрудника АЭС считаются 20 мЗв — в 20 раз больше, чем получает обычный человек. Для специалистов по ликвидации аварий, этих особым образом подготовленных людей, максимальная годовая доза составляет 200 мЗв. Это уже в 200 раз больше по сравнению с обычной дозой и… практически столько же, сколько получает космонавт, проработавший год на МКС».
В настоящее время медициной установлена максимальная предельная доза, которую в течение жизни человеку превышать нельзя во избежание серьезных проблем со здоровьем. Это 1000 мЗв, или 1 Зв. Таким образом, даже работник АЭС с его нормативами может спокойно трудиться лет пятьдесят, ни о чем не беспокоясь. Космонавт же исчерпает свой лимит всего за пять лет. Но, даже налетав четыре года и набрав свои законные 800 мЗв, он уже вряд ли будет допущен в новый полет годичной продолжительности, потому что появится угроза превышения лимита.
«Еще одним фактором радиационной опасности в космосе, — объясняет Вячеслав Шуршаков, — является активность Солнца, особенно так называемые протонные выбросы. В момент выброса за короткое время космонавт на МКС может получить дополнительно до 30 мЗв. Хорошо, что солнечные протонные события происходят редко — 1−2 раза за 11-летний цикл солнечной активности. Плохо, что эти процессы возникают стохастически, в случайном порядке, и плохо поддаются прогнозированию. Я не помню такого, чтобы мы были бы заранее предупреждены нашей наукой о грядущем выбросе. Обычно дело обстоит по‑другому. Дозиметры на МКС вдруг показывают повышение фона, мы звоним специалистам по Солнцу и получаем подтверждение: да, наблюдается аномальная активность нашего светила. Именно из-за таких внезапно возникающих солнечных протонных событий мы никогда точно не знаем, какую именно дозу привезет с собой космонавт из полета».
Частицы, сводящие с ума
Радиационные проблемы у экипажей, отправляющихся на Марс, начнутся еще у Земли. Корабль массой 100 или более тонн придется долго разгонять по околоземной орбите, и часть этой траектории пройдет внутри радиационных поясов. Это уже не часы, а дни и недели. Дальше — выход за пределы магнитосферы и галактическое излучение в его первозданной форме, много тяжелых заряженных частиц, воздействие которых под «зонтиком» магнитного поля Земли ощущается мало.
«Проблема в том, — говорит Вячеслав Шуршаков, — что влияние частиц на критические органы человеческого организма (например, нервную систему) сегодня мало изучено. Возможно, радиация станет причиной потери памяти у космонавта, вызовет ненормальные поведенческие реакции, агрессию. И очень вероятно, что эти эффекты не будут привязаны к конкретной дозе. Пока не накоплено достаточно данных по существованию живых организмов за пределами магнитного поля Земли, отправляться в длительные космические экспедиции очень рискованно».
Когда специалисты по радиационной безопасности предлагают конструкторам космических аппаратов усилить биозащиту, те отвечают, казалось бы, вполне рациональным вопросом: «А в чем проблема? Разве кто-то из космонавтов умер от лучевой болезни?» К сожалению, полученные на борту даже не звездолетов будущего, а привычной нам МКС дозы радиации хоть и вписываются в нормативы, но вовсе не безобидны. Советские космонавты почему-то никогда не жаловались на зрение — видимо, побаиваясь за свою карьеру, но американские данные четко показывают, что космическая радиация повышает риск катаракты, помутнения хрусталика. Исследования крови космонавтов демонстрируют увеличение хромосомных аберраций в лимфоцитах после каждого космического полета, что в медицине считается онкомаркером. В целом сделан вывод о том, что получение в течение жизни допустимой дозы в 1 Зв в среднем укорачивает жизнь на три года.
Лунные риски
Одним из «сильных» доводов сторонников «лунного заговора» считается утверждение о том, что пересечение радиационных поясов и нахождение на Луне, где нет магнитного поля, вызвало бы неминуемую гибель астронавтов от лучевой болезни. Американским астронавтам действительно приходилось пересекать радиационные пояса Земли — протонный и электронный. Но это происходило в течение всего лишь нескольких часов, и дозы, полученные экипажами «Аполлона» в ходе миссий, оказались существенными, но сопоставимыми с теми, что получают старожилы МКС. «Конечно, американцам повезло, — говорит Вячеслав Шуршаков, — ведь за время их полетов не произошло ни одного солнечного протонного события. Случись такое, астронавты получили бы сублетальные дозы — уже не 30 мЗв, а 3 Зв.
Намочите полотенца!
«Мы, специалисты в области радиационной безопасности, — говорит Вячеслав Шуршаков, — настаиваем на том, чтобы защита экипажей была усилена. Например, на МКС наиболее уязвимыми являются каюты космонавтов, где они отдыхают. Там нет никакой дополнительной массы, и от открытого космоса человека отделяет лишь металлическая стенка толщиной в несколько миллиметров. Если приводить этот барьер к принятому в радиологии водному эквиваленту, это всего лишь 1 см воды. Для сравнения: земная атмосфера, под которой мы укрываемся от излучения, эквивалентна 10 м воды. Недавно мы предложили защитить каюты космонавтов дополнительным слоем из пропитанных водой полотенец и салфеток, что намного бы снизило действие радиации. Разрабатываются медикаментозные средства для защиты от излучения — правда, на МКС они пока не используются. Возможно, в будущем методами медицины и генной инженерии мы сможем усовершенствовать тело человека таким образом, чтобы его критические органы были более устойчивыми к факторам радиации. Но в любом случае без пристального внимания науки к этой проблеме о дальних космических полетах можно забыть».
Летчик-космонавт Олег Котов : «Радиация – это бич, который больше всего нас привязывает к Земле. Не техника, не двигатели, не конструктив, не система обеспечения, а радиация, которая заставляет нас летать на низких околоземных орбитах. Решим эту проблему – полетим дальше«.
Что мы знаем о космической радиации
Что такое космическая радиация
Это электромагнитное излучение, которое имеет внеземной источник. Его подразделяют на первичное и вторичное излучение. Иногда космическое излучение еще называют космическими лучами.
Первичные космические лучи представляют собой поток заряженных ядерных частиц, который проходит через поверхность Земли, появляясь из различных участков космического пространства. Источником появления этих частиц стоит считать космическую энергию, которую высвобождают сверхновые (взорвавшиеся звезды), а также всеми любимое Солнце — оно является наиболее постоянным поставщиком космического излучения.
Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы, так называемый солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы — солнечной короны. Вблизи Земли его скорость составляет обычно 400–500 км/с.
В свою очередь, «вспышки» на Солнце — выбросы дополнительной корпускулярной энергии — провоцируют магнитные бури и полярные сияния, а также представляют угрозу для жизни космонавтов при выходе в открытый космос.
Кстати, эти «вспышки» и высвобождаемая ими энергия — один из главных аргументов в пользу теории о том, что американцы на Луну не высаживались. Сторонники «лунного заговора» заявляют, что американские астронавты неминуемо погибли бы от лучевой болезни по причине того, что на поверхности спутника нет магнитного поля. К тому же экипаж «Аполлона-11» во главе с Нилом Армстронгом пересек радиационные пояса Земли, а значит, должен был получить колоссальные дозы облучения.
В теории всё верно, но на деле астронавты подвергались действию космической радиации всего в течение нескольких часов и получили дозы облучения, сопоставимые с теми, что обычно получают космонавты на МКС, то есть они были приемлемыми. Также нужно принять во внимание факт везения, ведь во время лунной миссии на Солнце не произошло никаких энергетических выбросов, которые могли бы привести к сублетальным дозам радиации.
Вторичные же космические лучи формируются при столкновении частиц космических лучей с частицами воздуха. Чем глубже эти частицы проникают в атмосферу, тем больше энергии они теряют. Это объясняет явление, о котором ты прочтешь ниже.
На какой высоте встречается
Вообще, космическая радиация распространяется повсеместно, но благодаря наличию у Земли магнитного поля она рассеивается. Магнитное поле служит своеобразным щитом, который не позволяет Солнцу — источнику этой радиации — уничтожить всё живое.
Так, на поверхности Земли естественный радиационный фон колеблется в пределах отметки 0,1–0,20 мкЗв/час (10–20 мкР/час), что является безопасной мощностью дозы для человека.
Однако чем выше мы поднимаемся, тем больше растет уровень радиации. Особенно наглядно это иллюстрируется на примере авиационных полетов. Специалисты из «Интерсофт Евразия» провели исследование на основе своих гаджетов DO-RA и замерили показатели космического излучения на разной высоте. Вот что у них получилось.
Как видишь, при наборе высоты показатели на дозиметре пропорционально увеличивались. С чем это связано — попробуй догадаться самостоятельно.
Чем опасна космическая радиация
Наверняка ты смотрел сериал «Чернобыль». Люди, пострадавшие при аварии и ликвидации ее последствий, конечно, получили несоизмеримые дозы облучения в сравнении с теми, что встречаются на борту самолета. Но и эти оказывают свое негативное воздействие на организм.
Наиболее чувствительными к радиации являются кожа, хрусталик глаза, легкие, щитовидная железа, костный мозг и кишечник. При длительном воздействии на организм излучение поражает ДНК и РНК, нарушает обмен веществ, снижает иммунитет и активизирует развитие новообразований у человека и животных.
Кто в зоне риска (как раз здесь о пилотах и часто летающих людях)
Не пугайся раньше времени. Среди профессий, наиболее подверженных радиоактивному космическому излучению, лидируют бортпроводники и летчики. Ну и пассажиры самолетов, часто пользующиеся услугами авиакомпаний. Часто — это более 30 раз в год. Пассажир, конечно, не профессия, но не упомянуть об этом в данном контексте нельзя.
Из-за активного эффекта воздействия ионизирующего излучения на человека и системы организма в авиации введены специальные радиационные нормы для лётного персонала. Эти нормы ограничивают полеты авиационного состава из расчета не более 80 лётных часов в месяц, не более 240 лётных часов в квартал (3 месяца) и не более 800 лётных часов в год на человека. Это данные из регламента ICAO — Международной организации гражданской авиации.
Как обезопаситься
Мы бы не сказали, что нужно применять какие-то сверхмеры по защите себя от излучения. Чтобы по-настоящему ощутить на себе влияние космической радиации, необходимо проводить в полете не менее 33 часов в год. За это время можно получить дозу в 0,1 мЗв (миллизиверт) — это эквивалентно рентгену грудной клетки.
Чтобы контролировать все возможные изменения в работе собственного организма, необходимо регулярно проходить диспансеризацию, примерно раз-два в год. При таком подходе к своему здоровью всё будет в порядке.
«Интерсофт Евразия» — компания, созданная для реализации инновационных проектов в области носимой электроники, дозиметрической техники и технологий. Направления работы компании: разработка программного обеспечения, технологии производства твердотельных детекторов ионизирующего излучения и электроники чтения, систем мониторинга радиационной обстановки.