Косинус икс равен 1 чему равен икс
Решение уравнений cosx
Решение уравнений cos(x)
cosx = 1
cosx = 1
На единичной окружности имеется лишь одна точка с абсциссой 1.
где, — множество целых чисел.
Эта точка соответствует углу и всем углам, отличающихся от на несколько полных оборотов в обе стороны.
cosx = 0
cosx = 0
Точки с абсциссой образуют на единичной окружности вертикальную диаметральную пару.
Все углы, отвечающие этим точкам, получаются из прибавлением целого числа (полуоборотов):
cosx = 1/2
Имеем вертикальную пару точек с абсциссой 1/2.
Все углы, соответствующие верхней точке, описываются формулой:
Все углы, соответствующие нижней точке, описываются формулой:
Обе формулы можно записать одной формулой:
Другие уравнения с косинусом
Остальные уравнения с косинусом решаются аналогично:
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Решение тригонометрических уравнений.
Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Немного теории.
Тригонометрические уравнения
Уравнение cos(х) = а
Уравнение cos x = а, где \( |a| \leqslant 1 \), имеет на отрезке \( 0 \leqslant x \leqslant \pi \) только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> <2>\right] \); если a
Уравнение sin(х) = а
Уравнение tg(х) = а
Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.
Решение тригонометрических уравнений
Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.
Уравнения, сводящиеся к квадратным
Уравнение вида a sin(x) + b cos(x) = c
Используя формулы \( \sin(x) = 2\sin\frac
В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях \( a \neq 0, \; b \neq 0, \; c \neq 0, \; c^2 \leqslant b^2+c^2 \) можно решить методом введения вспомогательного угла.
Разделим обе части этого уравнения на \( \sqrt \):
Решить уравнение 4 sin(x) + 3 cos(x) = 5
Здесь a = 4, b = 3, \( \sqrt = 5 \). Поделим обе части уравнения на 5:
Уравнения, решаемые разложением левой части на множители
Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.
Разделы: Математика
Цели урока:
Главная дидактическая цель: рассмотреть все возможные способы решения данного уравнения.
Обучающие: изучение новых приемов решения тригонометрических уравнений на примере данного в творческой ситуации урока-семинара.
Развивающие: формирование общих приемов решения тригонометрических уравнений; совершенствование мыслительных операций учащихся; развитие умений и навыков устной монологической математической речи при изложении решения тригонометрического уравнения.
Воспитывающие: развивать самостоятельность и творчество; способствовать выработке у школьников желания и потребности обобщения изучаемых фактов.
Вопросы для подготовки и дальнейшего обсуждения на семинаре.
Все учащиеся разбиваются на группы (по 2-4 человека) в зависимости от общего количества учащихся и их индивидуальных способностей и желания. Самостоятельно определяют для себя тему для подготовки и выступления на уроке-семинаре. Выступает один человек от группы, а остальные учащиеся принимают участие в дополнениях и исправлениях ошибок, если в этом возникнет необходимость.
Организационный момент.
Тема урока:
Форма проведения: урок – семинар.
Эпиграф к уроку:
“Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия. Задача, которую вы решаете, может быть скромной, но если она бросает вызов вашей любознательности и заставляет вас быть изобретательными и если вы решаете ее собственными силами, то вы сможете испытать ведущее к открытию напряжение ума и насладиться радостью победы”
Задачи урока:
а) рассмотреть возможность решения одного и того же уравнения различными способами;
б) познакомиться с различными общими приемами решения тригонометрических уравнений;
в) изучение нового материала (введение вспомогательного угла, универсальная подстановка).
План семинара
Содержание.
1. Слово предоставляется первому участнику.
2 sin cos
— cos
+ sin
= sin
+ cos
;
2 sin cos
— cos
=0 ;
cos
= 0;
Произведение равно нулю, если хотя бы один из множителей равен нулю, а другие при этом не теряют смысла, поэтому следует
cos =0 ;
=
Получим tg -1 = 0 ; tg
= 1 ;
=
Ответ:
2. Слово предоставляется второму участнику.
sin x – (1+ cos x ) = 1; используем формулы 1+ cos x = 2 ,
получим
;
далее аналогично:
произведение равно нулю, если хотя бы один из множителей равен нулю, а другие при этом не теряют смысла, поэтому следует
Получим tg -1 = 0 ; tg
= 1 ;
=
Ответ:
3. Слово предоставляется третьему участнику.
;
Ответ:
4. Слово предоставляется четвертому участнику.
Запишем уравнение в виде , используя формулу приведения
. Применяя формулу разности двух синусов, получим
;
и так далее, аналогично предыдущему способу.
Ответ:
5. Слово предоставляется пятому участнику.
Возведем обе части полученного уравнения в квадрат:
В процессе решения обе части уравнения возводились в квадрат, что могло привести к появлению посторонних решений, поэтому необходима проверка. Выполним ее.
Полученные решения эквивалентны объединению трех решений:
Первое и второе решения совпадают с ранее полученными, поэтому не являются посторонними. Остается проверить третье решение Подставим.
Левая часть:
Получили: , следовательно,
– постороннее решение.
Ответ:
6. Слово предоставляется шестому участнику.
;
;
Используя основное тригонометрическое тождество и формулу синуса двойного угла, получим ; sin 2x = 0 ;
.
Полученное решение эквивалентно объединению четырех решений:
Ответ:
7. Слово предоставляется седьмому участнику.
Запишем данное уравнение с учетом приведенных формул в виде .
,
получим
ОДЗ данного уравнения – все множество R. При переходе к из рассмотрения выпали значения, при которых
не имеет смысла, т. е.
или
.
Следует проверить, не являются ли решениями данного уравнения. Подставим в левую и правую часть уравнения эти решения.
Левая часть: .
Получили 1=1. Значит, — решение данного уравнения.
Ответ:
8. Слово предоставляется восьмому участнику.
Запишем рассматриваемое уравнение в виде sin x = 1 + cos x.
Построим в системе координат Оxy графики функций, соответствующих левой и правой частям уравнения. Абсциссы точек пересечения графиков являются решениями данного уравнения.
y = sin x – график: синусоида.
y = cos x +1 – график: косинусоида y = cos x, смещенная на 1 вверх по оси Oy. Абсциссы точек пересечения являются решениями данного уравнения.
Ответ: