Конфигурация валентных электронов что это

Атомы и электроны

Атомно-молекулярное учение

Описываемая модель атома называется «планетарной» и была предложена в 1913 году великими физиками: Нильсом Бором и Эрнестом Резерфордом

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Запомните, что в невозбужденном состоянии атом содержит одинаковое число электронов и протонов. Так у кальция (порядковый номер 20) в ядре находится 20 протонов, а вокруг ядра на электронных орбиталях 20 электронов.

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Я еще раз подчеркну эту важную деталь. На данном этапе будет отлично, если вы запомните простое правило: порядковый номер элемента = числу электронов. Это наиболее важно для практического применения и изучения следующей темы.

Электронная конфигурация атома

Электроны атома находятся в непрерывном движении вокруг ядра. Энергия электронов отличается друг от друга, в соответствии с этим электроны занимают различные энергетические уровни.

Состоит из s-подуровня: одной «s» ячейки (2s 2 ) и p-подуровня: трех «p» ячеек (2p 6 ), на которых помещается 6 электронов

Состоит из s-подуровня: одной «s» ячейки (3s 2 ), p-подуровня: трех «p» ячеек (3p 6 ) и d-подуровня: пяти «d» ячеек (3d 10 ), в которых помещается 10 электронов

Состоит из s-подуровня: одной «s» ячейки (4s 2 ), p-подуровня: трех «p» ячеек (4p 6 ), d-подуровня: пяти «d» ячеек (4d 10 ) и f-подуровня: семи «f» ячеек (4f 14 ), на которых помещается 14 электронов

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Зная теорию об энергетических уровнях и порядковый номер элемента из таблицы Менделеева, вы должны расположить определенное число электронов, начиная от уровня с наименьшей энергией и заканчивая к уровнем с наибольшей. Чуть ниже вы увидите несколько примеров, а также узнаете об исключении, которое только подтверждает данные правила.

Подуровни: «s», «p» и «d», которые мы только что обсудили, имеют в определенную конфигурацию в пространстве. По этим подуровням, или атомным орбиталям, движутся электроны, создавая определенный «рисунок».

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Правила заполнения электронных орбиталей и примеры

Должно быть, вы обратили внимание на некоторое несоответствие: после 3p подуровня следует переход к 4s, хотя логично было бы заполнить до конца 4s подуровень. Однако природа распорядилась иначе.

Запомните, что, только заполнив 4s подуровень двумя электронами, можно переходить к 3d подуровню.

Теперь мы располагаем указанное количество электронов на энергетических уровнях, руководствуясь правилами заполнения.

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Обращаю ваше особе внимание: на 2p-подуровне углерода мы расположили 2 электрона в разные ячейки, следуя одному из правил. А на 3p-подуровне у серы электронов оказалось много, поэтому сначала мы расположили 3 электрона по отдельным ячейкам, а оставшимся одним электроном дополнили первую ячейку.

Внешний уровень и валентные электроны

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Тренировка

Потренируйтесь и сами составьте электронную конфигурацию для магния и скандия. Определите число электронов на внешнем (валентном) уровне и число неспаренных электронов. Ниже будет дано наглядное объяснение этой задаче.

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Источник

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Электроны и валентность

Международный союз теоретической и прикладной химии определил валентность как максимальное число одновалентных атомов (первоначально — водорода или хлора), которые могут объединяться с атомом или фрагментом рассматриваемого элемента.

Современная альтернативная трактовка звучит несколько иначе: валентность — это число атомов водорода, которые могут объединяться с элементом в бинарном гидриде, или удвоенное количество атомов кислорода, объединяющихся с элементом в его оксиде или оксидах. Это определение отличается от формулировки МСТПХ, поскольку большинство веществ имеет более чем одну валентность.

Модель ядерного атома Резерфорда (1911) показала, что внешнюю оболочку атома занимают заряженные частицы, это свидетельствует о том, что электроны ответственны за взаимодействие атомов и образование химических связей.

В 1916 году Гилберт Н. Льюис объяснил валентность и химическую связь с точки зрения тенденции атомов достигать стабильного октета из 8 электронов в валентной оболочке.

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Согласно Льюису, ковалентная связь приводит к октетам при совместном использовании электронов, а ионная связь — при передаче электронов от одного атома к другому. Термин ковалентность приписывается Ирвингу Лэнгмюру. Префикс ко означает «вместе», то есть атомы разделяют валентность. Поэтому определение валентности по формуле соединения стало возможным.

В 1930-х годах Линус Полинг предположил, что существуют также полярные ковалентные связи, которые являются промежуточными, а степень ионного характера зависит от разницы электроотрицательности двух связанных атомов.

Полинг также рассматривал гипервалентные молекулы, в которых элементы имеют кажущиеся валентности, например, в молекуле гексафторида серы (SF6). Учёный считал, что сера образует 6 истинных двух электронных связей с использованием sp 3 d 2 гибридных атомных орбиталей, которые объединяют одну s, три p и две d орбитали.

Для основных элементов в периодической таблице Менделеева валентность может варьироваться от 1 до 7. Многие вещества имеют общую валентность, связанную с их положением в таблице. Для описания ионов в зарядовых состояниях 1, 2, 3 и т. д. (соответственно) используются греческие/латинские цифровые префиксы (моно- / уни- / би- / три-).

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Виды с одним зарядом являются одновалентными. Например, Cs + — одновалентный катион, тогда как Ca 2+ является двухвалентным, а Fe 3+ — трёхвалентным. Существуют также поливалентные катионы, которые не ограничены определённым количеством валентных связей.

В отличие от Cs и Ca, Fe может существовать в других зарядовых состояниях, особенно 2+ и 4+, и поэтому известен как многовалентный (поливалентный) ион.

Переходные металлы и металлы, как правило, многовалентны, но, к сожалению, не существует простой схемы, предсказывающей их валентность.

Определение количества

Можно определить количество электронов с помощью специального онлайн-калькулятора. Однако его нахождение под рукой не всегда возможно. Поэтому следующий вариант — обратиться к атомной конфигурации элемента и просто сосчитать число заряженных частиц в самой внешней оболочке атома. Однако это чрезвычайно утомительное занятие, так как, возможно, придётся пролистать много учебников, чтобы найти конфигурации, с которыми исследователь не знаком.

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Количество ВЭ элемента и его валентность определить по таблице Менделеева проще всего. Нужно обратить внимание на вертикальный столбец, в котором указана классификация.

Исключением являются переходные металлы — 3−12 группы.

Цифра в порядковом номере группы показывает, сколько валентных электронов связано с нейтральным атомом вещества, указанного в этом конкретном столбце.

Пример в таблице:

ГруппаВЭ
1 (I) (щелочные металлы)1
2 (II) (щёлочноземельные металлы)2
3−12 (переходные металлы)3−12
13 (III) (борная группа)3
14 (IV) (углеродная)4
15 (V) (группа азота)5
16 (VI) (кислородная группа)6
17 (VII) (галогены)7
18 (VIII или 0) (благородные газы)8

Надо сказать, что периодическая таблица — это аккуратное расположение всех элементов, которые известны науке на данный момент.

Они располагаются слева направо в порядке возрастания их атомарных номеров или числа протонов (электронов), которые они содержат.

Все вещества в таблице Менделеева делятся на четыре категории:

Последние два — это внутренние переходные элементы, образующие мост в группах 2 и 13. Таблица содержит строки — периоды — и 18 столбцов, известных как группы. Есть ещё подтаблица, которая содержит 7 строк и 2 столбца с более редкими веществами.

Номер строки (периода) элемента показывает количество оболочек, окружающих его ядро.

Химические реакции

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Вторая группа — щёлочноземельные металлы, например, магний, — менее реактивны. Чтобы получить положительный ион (Mg 2+ ), каждому их атому нужно отдать два ВЭ.

В любой группе (в столбце таблицы Менделеева) металлов реакционная способность становится больше, если двигаться от лёгкого вещества к более тяжёлому, то есть увеличивается с каждым нижним рядом таблицы. Происходит это просто потому, что у тяжёлых элементов больше оболочек. Их ВЭ приходится существовать в условиях более высоких главных квантовых чисел.

Они находятся дальше от атомного ядра и, следовательно, обладают более высокой потенциальной энергией, это означает, что связь между ними менее тесная.

Атом неметалла настроен привлекать дополнительные ВЭ, чтобы образовать полную валентную оболочку. Это может быть достигнуто одним из двух способов:

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Наиболее реактивными видами неметаллических элементов являются галогены. К ним можно отнести хлор (Cl) или, например, фтор (F).

Если двигаться от лёгкого элемента к тяжёлому, в пределах каждой группы неметаллов их реакционная способность будет уменьшаться. Это потому, что ВЭ будут терять тесную связь, поскольку приобретают более высокую энергию. По факту, самый лёгкий элемент в группе 16 — кислород — наиболее реакционноспособный неметалл, после фтора, конечно.

В таких простых случаях, когда соблюдается правило октета, валентность атома равна количеству разделённых электронов, потерянных или полученных для того, чтобы сформировался стабильный октет. Однако есть также много молекул, для которых валентность менее чётко определена, но это скорее исключения.

Электронная конфигурация

Заряженные частицы, определяющие химическую реакцию атома, — это те, чьё среднее расстояние от ядра самое большое, то есть они обладают самой высокой энергией. Для элемента основной группы ВЭ определяются как те, что находятся в электронной оболочке с наибольшим главным квантовым числом n.

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Однако переходные элементы имеют частично заполненные (n — 1) d энергетические уровни, к слову, довольно близкие по энергии к уровню ns. Поэтому, в отличие от веществ основной группы, ВЭ для переходного металла определяется как частица, которая находится вне ядра благородного газа.

Вне аргоноподобного ядра, возможно, есть семь валентных электронов (4s 2 3d 5 ), это вполне согласуется с тем фактом, что, например, степень окисления марганца может достигать +7 (в перманганатном ионе MnO — 4).

Чем правее вещество расположено в ряду переходных металлов, тем энергия его заряженной частицы в субоболочке ниже, и тем меньше валентных свойств у такого электрона.

Например, хотя обычно у атома никеля десятая валентность (4s 2 3d 8 ), его степень окисления никогда не превышает четырёх. Для цинка 3d-оболочка является полной и ведёт себя подобно электронам ядра.

Поскольку количество ВЭ, участвующих в химических реакциях фактически, предсказать сложно, концепция этой частицы несёт мало пользы для переходных металлов, если сравнивать с элементами из основной группы. Однако подсчёт электронов для понимания химии переходных металлов является альтернативным инструментом.

Электрическая проводимость

Ответственность за электрическую проводимость вещества в том числе лежит и на электронах. Вследствие чего элементы классифицируются следующим образом:

В твёрдом состоянии металлические элементы обычно имеют высокую электропроводность. Поскольку валентный электрон металла обладает небольшой энергией ионизации, находясь в твёрдом состоянии, он относительно свободно покидает атом, чтобы связываться с другими.

Когда электрон свободный, он может перемещаться под воздействием электрического поля, то есть создавать электрический ток, отвечая за электропроводность металла. Примером хороших проводников могут служить серебро, равно как и золото, алюминий и, конечно, медь.

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Как изолятор действует неметаллический элемент, поскольку имеет низкую электропроводность. В таблице Менделеева такие вещества находятся справа. Их валентная оболочка заполнена наполовину (исключение составляет бор). Когда на атом воздействует некоторое электрическое поле, заряженная частица не может его легко покинуть, поэтому такой элемент может проводить слабый постоянный или переменный электрический ток. Например, сера и алмаз — одни из таких веществ.

Изолятором также может быть твёрдое соединение, которое содержит металлы, если для образования ионных связей используются ВЭ атомов металла. К примеру, натрий, хоть он и представляет собой мягкий металл, однако твёрдый хлорид натрия является изолятором.

Поскольку для образования ионной связи ВЭ натрия переносятся в хлор, электроны не имеют возможности легко перемещаться.

Полупроводники обладают промежуточной между металлами и неметаллами электрической проводимостью. Интересно, что при увеличении температуры у этих веществ улучшается проводимость. Германий и кремний можно отнести к типичным элементарным полупроводникам, каждый их атом имеет 4 ВЭ. Надо сказать, что лучше всего свойства полупроводников объясняются с помощью теории зон.

Источник

валентный электрон

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Содержание

Обзор [ править ]

Электронная конфигурация [ править ]

Чем дальше вправо в каждой серии переходных металлов, тем ниже энергия электрона в подоболочке и тем меньше у такого электрона валентных свойств. Таким образом, хотя атом никеля в принципе имеет десять валентных электронов (4s 2 3d 8 ), его степень окисления никогда не превышает четырех. Для цинка подоболочка 3d является полной во всех известных соединениях, хотя она вносит вклад в валентную зону в некоторых соединениях. [4]

Подсчет д электронов является альтернативным инструментом для понимания химии переходного металла.

Число валентных электронов [ править ]

Количество валентных электронов элемента может быть определено группой периодической таблицы (вертикальный столбец), в которой этот элемент отнесен к категории. За исключением групп 3–12 ( переходные металлы ), цифра единиц номера группы указывает, сколько валентных электронов связано с нейтральным атомом элемента, указанного в этом конкретном столбце.

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Блок периодической таблицыГруппа периодической таблицыВалентные электроны
sГруппа 1 (I) ( щелочные металлы )1
Группа 2 (II) ( щелочноземельные металлы ) и гелий2
жЛантаноиды и актиниды3–16 [а]
dГруппы 3-12 ( переходные металлы )3–12 [b]
пГруппа 13 (III) ( группа бора )3
Группа 14 (IV) ( углеродная группа )4
Группа 15 (V) ( пниктогены или азотная группа)5
Группа 16 (VI) ( халькогены или кислородная группа)6
Группа 17 (VII) ( галогены )7
Группа 18 (VIII или 0) ( благородные газы ), кроме гелия8

Оболочка валентности [ править ]

Химические реакции [ править ]

Количество валентных электронов в атоме определяет его связывающее поведение. Следовательно, элементы, атомы которых могут иметь одинаковое количество валентных электронов, сгруппированы вместе в периодической таблице элементов.

В каждой группе (каждом столбце периодической таблицы) металлов реакционная способность увеличивается с каждой нижней строкой таблицы (от легкого элемента к более тяжелому), потому что более тяжелый элемент имеет больше электронных оболочек, чем более легкий элемент; валентные электроны более тяжелого элемента существуют с более высокими главными квантовыми числами (они находятся дальше от ядра атома и, следовательно, имеют более высокие потенциальные энергии, что означает, что они менее тесно связаны).

Внутри каждой группы неметаллов реакционная способность уменьшается с каждой нижней строкой таблицы (от легкого элемента к тяжелому) в периодической таблице, потому что валентные электроны имеют все более высокие энергии и, следовательно, все менее прочно связаны. Фактически, кислород (самый легкий элемент в группе 16) является наиболее реакционноспособным неметаллом после фтора, хотя он и не является галогеном, потому что валентная оболочка галогена имеет более высокое главное квантовое число.

В этих простых случаях, когда соблюдается правило октетов, валентность атома равна количеству электронов, полученных, потерянных или разделенных для формирования стабильного октета. Однако есть также много молекул, которые являются исключениями и для которых валентность менее четко определена.

Электропроводность [ править ]

Металл Металлоид Неметалл Неизвестные свойства Цвет фона показывает тенденцию металл – металлоид – неметалл в периодической таблице.

Источник

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

СОДЕРЖАНИЕ

Обзор

Электронная конфигурация

Чем дальше вправо в каждой серии переходных металлов, тем ниже энергия электрона в подоболочке и тем меньше у такого электрона валентных свойств. Таким образом, хотя атом никеля в принципе имеет десять валентных электронов (4s 2 3d 8 ), его степень окисления никогда не превышает четырех. Для цинка подоболочка 3d является полной во всех известных соединениях, хотя она вносит вклад в валентную зону в некоторых соединениях.

Подсчет д электронов является альтернативным инструментом для понимания химии переходного металла.

Количество валентных электронов

Количество валентных электронов элемента может быть определено группой периодической таблицы (вертикальный столбец), в которой этот элемент отнесен к категории. За исключением групп 3–12 ( переходные металлы ), цифра единиц номера группы указывает, сколько валентных электронов связано с нейтральным атомом элемента, указанного в этом конкретном столбце.

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Блок периодической таблицыГруппа периодической таблицыВалентные электроны
sГруппа 1 (I) ( щелочные металлы )1
Группа 2 (II) ( щелочноземельные металлы ) и гелий2
жЛантаноиды и актиниды3–16
dГруппы 3-12 ( переходные металлы )3–12
пГруппа 13 (III) ( группа бора )3
Группа 14 (IV) ( углеродная группа )4
Группа 15 (V) ( пниктогены или азотная группа)5
Группа 16 (VI) ( халькогены или кислородная группа)6
Группа 17 (VII) ( галогены )7
Группа 18 (VIII или 0) ( благородные газы ), кроме гелия8

валентной оболочки

Химические реакции

Количество валентных электронов в атоме определяет его связывающее поведение. Следовательно, элементы, атомы которых могут иметь одинаковое количество валентных электронов, сгруппированы вместе в периодической таблице элементов.

Внутри каждой группы (каждого столбца периодической таблицы) металлов реакционная способность увеличивается с каждой нижней строкой таблицы (от легкого элемента к более тяжелому), потому что более тяжелый элемент имеет больше электронных оболочек, чем более легкий элемент; валентные электроны более тяжелого элемента существуют с более высокими главными квантовыми числами (они находятся дальше от ядра атома и, таким образом, имеют более высокие потенциальные энергии, что означает, что они менее тесно связаны).

Внутри каждой группы неметаллов реакционная способность уменьшается с каждой нижней строкой таблицы (от легкого элемента к тяжелому) в периодической таблице, потому что валентные электроны имеют все более высокие энергии и, таким образом, все менее прочно связаны. Фактически, кислород (самый легкий элемент в группе 16) является наиболее реакционноспособным неметаллом после фтора, хотя он и не является галогеном, потому что валентная оболочка галогена имеет более высокое главное квантовое число.

В этих простых случаях, когда соблюдается правило октета, валентность атома равна количеству электронов, полученных, потерянных или разделенных для формирования стабильного октета. Однако есть также много молекул, которые являются исключениями и для которых валентность менее четко определена.

Электрическая проводимость

Металл Металлоид Неметалл Неизвестные свойства Цвет фона показывает тенденцию металл – металлоид – неметалл в периодической таблице.

Источник

Электронная конфигурация атома

Для чего изучать электронную конфигурацию элементов?

Атомы как конструктор: есть определённое количество деталей, они отличаются друг от друга, но две детали одного типа абсолютно одинаковы. Но этот конструктор куда интереснее, чем пластмассовый и вот почему. Конфигурация меняется в зависимости от того, кто есть рядом. Например, кислород рядом с водородом может превратиться в воду, рядом с натрием в газ, а находясь рядом с железом вовсе превращает его в ржавчину. Что бы ответить на вопрос почему так происходит и предугадать поведение атома рядом с другим необходимо изучить электронную конфигурацию, о чём и пойдёт речь ниже.

Сколько электронов в атоме?

Где искать электрон?

Наблюдая поведение электрона были выведены определённые закономерности, они описываются квантовыми числами, всего их четыре:

Орбиталь

Орбитальное квантовое число l

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Магнитное квантовое число ml

Внутри оболочки электронам легче располагаться на разных орбиталях, поэтому первые электроны заполняют по одному на каждую орбиталь, а затем уже к каждому присоединяется его пара.

Рассмотрим d-оболочку:
d-оболочке соответствует значение L=2, то есть пять орбиталей (-2,-1,0,1 и 2), первые пять электронов заполняют оболочку принимая значения Ml=-2,Ml=-1,Ml=0, Ml=1,Ml=2.

Спиновое квантовое число ms

Главное квантовое число n

Номер электрона

Конфигурация валентных электронов что это. Смотреть фото Конфигурация валентных электронов что это. Смотреть картинку Конфигурация валентных электронов что это. Картинка про Конфигурация валентных электронов что это. Фото Конфигурация валентных электронов что это

Итак, любой электрон можно описать четырьмя квантовыми числами, комбинация из этих чисел уникальна для каждой позиции электрона, возьмём первый электрон, самый низкий энергетический уровень это N=1, на первом уровне распологается одна оболочка, первая оболочка на любом уровне имеет форму шара (s-оболочка), т.е. L=0, магнитное квантовое число может принять только одно значение, Ml=0 и спин будет равен +1/2. Если мы возьмём пятый электрон (в каком бы атоме он не был), то главные квантовые числа для него будут: N=2, L=1, M=-1, спин 1/2.

Энергетические уровни с подуровнями для наглядности изображены ниже, сверху вниз расположены уровни и цветом разделены подуровни:

1
2
3
4
5
6
7
8
Таблица 1. Распределение электронов по энергетическим уровням

Здесь, сверху-вниз показаны энергетические уровни (1-7), слева-направо разделены по группам электронные подуровни (s,p,d,f), в каждой ячейке располагаются по два электрона в противоположных направлениях. Общий принцип распределения электронов такой, что энергетические подуровни заполняются в порядке суммы главного и орбитального квантовых чисел, то есть: 1S, 2S, 2P, 3S, 3P, 4S, 3D и так далее, если сумма одинакова, то сначала заполняется уровень с меньшим главным квантовым числом N.

У некоторых элементов имеются отклонения в формировании электронной конфигурации, а именно у 24Cr, 29Cu, 41Nb, 42Mo, 44Ru, 45Rh, 46Pd, 47Ag, 78Pt, 79Au

Элементы

Проверьте себя, составьте электронную конфигурацию для элементов #3, #13 и #18, затем проверьте себя по таблице ниже.

ЭлементНазваниеЭлектронная конфигурацияЭнергетических уровней
1Hводород1s 11
2Heгелий1s 21
3Liлитий1s 2 2s 12
4Beбериллий1s 2 2s 22
5Bбор1s 2 2s 2 2p 12
6Cуглерод1s 2 2s 2 2p 22
7Nазот1s 2 2s 2 2p 32
8Oкислород1s 2 2s 2 2p 42
9Fфтор1s 2 2s 2 2p 52
10Neнеон1s 2 2s 2 2p 62
11Naнатрий1s 2 2s 2 2p 6 3s 13
12Mgмагний1s 2 2s 2 2p 6 3s 23
13Alалюминий1s 2 2s 2 2p 6 3s 2 3p 13
14Siкремний1s 2 2s 2 2p 6 3s 2 3p 23
15Pфосфор1s 2 2s 2 2p 6 3s 2 3p 33
16Sсера1s 2 2s 2 2p 6 3s 2 3p 43
17Clхлор1s 2 2s 2 2p 6 3s 2 3p 53
18Arаргон1s 2 2s 2 2p 6 3s 2 3p 63
19Kкалий1s 2 2s 2 2p 6 3s 2 3p 6 4s 14
20Caкальций1s 2 2s 2 2p 6 3s 2 3p 6 4s 24
21Scскандий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 14
22Tiтитан1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 24
23Vванадий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 34
24Crхром1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 54
25Mnмарганец1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 54
26Feжелезо1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 64
27Coкобальт1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 74
28Niникель1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 84
29Cuмедь1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 104
30Znцинк1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 104
31Gaгаллий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 14
32Geгерманий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 24
33Asмышьяк1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 34
34Seселен1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 44
35Brбром1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 54
36Krкриптон1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 64
37Rbрубидий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 15
38Srстронций1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 25
39Yиттрий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 15
40Zrцирконий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 25
41Nbниобий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 1 4d 45
42Moмолибден1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 1 4d 55
43Tcтехнеций1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 55
44Ruрутений1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 1 4d 75
45Rhродий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 1 4d 85
46Pdпалладий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 4d 105
47Agсеребро1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 1 4d 105
48Cdкадмий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 105
49Inиндий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 15
50Snолово1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 25
51Sbсурьма1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 35
52Teтеллур1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 45
53Iйод1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 55
54Xeксенон1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 65
55Csцезий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 16
56Baбарий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 26
57Laлантан1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 5d 16
58Ceцерий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 26
59Prпразеодим1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 36
60Ndнеодим1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 46
61Pmпрометий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 56
62Smсамарий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 66
63Euевропий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 76
64Gdгадолиний1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 7 5d 16
65Tbтербий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 96
66Dyдиспрозий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 106
67Hoгольмий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 116
68Erэрбий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 126
68Tmтулий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 136
70Ybиттербий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 146
71Luлютеций1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 16
72Hfгафний1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 26
73Taтантал1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 36
74Wвольфрам1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 46
75Reрений1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 56
76Osосмий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 66
77Irиридий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 76
78Ptплатина1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 1 4f 14 5d 96
79Auзолото1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 1 4f 14 5d 106
80Hgртуть1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 106
81Tlталлий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 16
82Pbсвинец1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 26
83Biвисмут1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 36
84Poполоний1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 46
85Atастат1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 56
86Rnрадон1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 1 4d 10 5p 6 6s 2 4f 14 5d 10 6p 66
87Frфранций1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 17
88Raрадий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 27
89Acактиний1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 6d 17
90Thторий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 6d 2 5f 07
91Paпротактиний1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 2 6d 17
92Uуран1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 3 6d 17
93Npнептуний1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 4 6d 17
94Puплутоний1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 5 6d 17
95Amамериций1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 77
96Cmкюрий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 7 6d 17
97Bkберклий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 8 6d 17
98Cfкалифорний1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 107
99Esэйнштейний1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 117
100Fmфермий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 127
101Mdменделеевий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 137
102Noнобелий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 147
103Lrлоуренсий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 17
104Rfрезерфордий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 27
105Dbдубний1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 37
106Sgсиборгий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 47
107Bhборий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 57
108Hsхассий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 67
109Mtмейтнерий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 77
110Dsдармштадтий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 87
111Rgрентгений1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 97
112Cnкоперниций1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 107
113Nhнихоний1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 10 7p 17
114Flфлеровий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 10 7p 27
115Mcмосковий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 10 7p 37
116Lvливерморий1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 10 7p 47
117Tsтеннесcин1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 10 7p 57
118Ogоганесон1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 10 7p 67
Таблица 2. Электронная конфигурация атомов

Если Вы хотите узнать, как составить электронную конфигурацию, обратитесь к статье «как написать электронную конфигурацию»

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *