Коэффициент теплоотдачи и теплопередачи в чем разница

Теплопередача и теплоотдача

Понятие теплопередача (теплообмен) охватывает совокупность явлений передачи теплоты из более нагретой подвижной среды в другую, менее нагретую, через разделяющую их твердую стенку. Например, теплопередача от воды к воздуху, между которыми расположена стенка. Твердая стенка может быть и многослойной. Например, при рассмотрении переноса теплоты от воды, движущейся по трубопроводу теплотрассы, к окружающему воздуху.

Теплоотдача также охватывает совокупность явлений переноса теплоты только между поверхностью твердого тела и жидкой или газообразной подвижной средой. В практике гидрологов и метеорологов часто встречаются задачи о теплообмене между двумя подвижными средами, исключая твердую стенку, — это случай теплоотдачи водной поверхностью в окружающую ее среду — воздух.

В широком понимании теплопередача и теплоотдача осуществляются теплопроводностью, конвекцией, лучистым теплообменом, при изменении агрегатного состояния вещества, биологических процессах в живых организмах и др. Способы передачи тепла (теплоперенос или теплопередача) в твердом теле и в жидкости различны.

Перенос теплоты вследствие теплопроводности подчиняется закону Фурье. Рассматриваемая форма переноса теплоты в основном присуща твердым телам, в которых теплота распространяется передачей кинетической энергии от одних микрочастиц к другим путем соударений; перемещение самих частиц в твердом теле, естественно, исключено. Теплопроводность имеет место также в жидкостях и газах (воздухе). Но в последних теплота передается также путем перемещения частиц, носителей тепловой энергии. Такой способ называется конвективным теплопереносом. Заметим, что в первом случае теплота передается, а носители теплоты, частицы жидкости, остаются на месте, в то время как во втором случае теплота переносится вместе с жидкостью. Таким образом, в жидких и газообразных средах теплопроводность проявляется в чистом виде лишь в том случае, когда наблюдается прямая стратификация плотности. Для воды такому состоянию плотности соответствует повышение температуры с высотой при ее значении более 4°С и понижение с высотой — при ее температуре менее 4°С.

Перенос теплоты конвекцией происходит в результате перемещения частиц теплоносителя и наблюдается только в жидких и газообразных средах. В зависимости от причины, побуждающей частицы жидкости перемещаться, различают свободную и вынужденную конвекции.

Свободной (естественной, плотностной) конвекцией называется движение жидкости (газа), вызываемое неоднородностью плотности частиц жидкости (газа), находящихся в поле тяготения. Поэтому свободно конвективный перенос теплоты обусловлен перемещением частиц жидкости лишь в силу изменения их плотности, что, в свою очередь, обусловлено нагреванием или охлаждением ее или изменением концентрации (солености). Например, если воду в сосуде, находящуюся при температуре выше 4°С, охлаждать сверху, то в воде возникнет свободная конвекция, т. е. активный перенос частиц воды снизу вверх. Одновременно будет происходить перенос более охлажденных частиц в обратном направлении. В этом случае наблюдается нестационарная свободная конвекция. Увеличение плотности поверхностных слоев водоема может произойти также за счет увеличения мутности, обусловленной притоками, или осолонения при испарении.

Вынужденной конвекцией называется движение жидкости (газа), вызываемое воздействием внешних сил (ветер, насос и т.д.), а также однородного поля массовых сил в жидкости (уклон и т.д.). Таким образом, перенос теплоты вынужденной конвекцией обусловлен турбулентным перемешиванием водных или воздушных масс потока, а также связан с переносом теплоносителя. При вынужденной конвекции осуществляется перенос тепла, связанный, например, с течением водных и воздушных потоков, с ветровым перемешиванием и ветровым течением водных масс суши. В отличие от свободной конвекции при вынужденной конвекции происходит полярный перенос водных масс, а не молекулярный, т. е. перенос больших объемов жидкости.

Таким образом, гидравлика жидкости (поле скоростей) при вынужденной конвекции мало зависит от температуры и поэтому может и должна определяться до начала теплового расчета; она является заданным условием решения тепловой задачи, в то время как гидравлика при свободной (естественной) конвекции прямо связана с тепловым режимом рассматриваемого водного объекта, и поэтому здесь вопросы гидравлики и термики должны рассматриваться совместно, что принципиально существенно усложняет задачу.

Часто имеет место одновременно вынужденная и свободная конвекция.

Третья форма передачи теплоты обусловлена лучистым (радиационным) теплообменом и совершается путем двойного превращения энергии: сперва из тепловой в электромагнитную в месте излучения, а затем, после того как она прошла весь путь в теплопрозрачной среде, обратно в тепловую в месте поглощения. Таким образом, эта форма передачи теплоты характеризуется тем, что часть энергии тела, определяемая температурой его поверхности, преобразуется в энергию теплового излучения и уже в таком виде передается в окружающее пространство. Встречая на своем пути другое тело, лучистая энергия частично отражается от его поверхности и частично поглощается им, т. е. проникает на некоторую его глубину, зависящую от прозрачности тела.

Особая форма передачи теплоты имеет место в случае изменения агрегатного состояния вещества, например при кристаллизации воды и таянии льда, при конденсации водяного пара и испарении воды и т. д.

Биологические и химические процессы также сопровождаются тепловыми процессами. При кристаллизации и конденсации воды и биологических процессах происходит выделение теплоты, а при испарении воды, таянии льда — ее поглощение.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Чем отличается понятия теплообмен, теплоотдача и теплопередача?

Генератор числа без повтора. Не имею понятия в чем дело
Здравствуйте, задача такова. В функции вызвать случайное число, но чтобы онон не повторялось. Я.

Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть фото Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть картинку Коэффициент теплоотдачи и теплопередачи в чем разница. Картинка про Коэффициент теплоотдачи и теплопередачи в чем разница. Фото Коэффициент теплоотдачи и теплопередачи в чем разницаДартс в haskell? Какой ужас.понятия не имею, как и с чем это есть
А как делать это. =-O Дартс поделен на 20 секций. За каждый бросок начисляется такое.

Основы Java освоены, понятия, парадигмы, ООП. Читать код могу, понятия есть, но все бы ничего, что дальше?
Доброго времени суток товарищи Столкнулся с такой ситуацией: куда двигаться дальше? Основы Java.

Чем отличается?
Чем отличается? %d и %i в этой проге что лучше использовать d или i #include int.

Ну, эти коэффициенты ничем не отличаются, можно даже обозначить их одной буквой 🙂

В моем случае Генератор и Конденсатор объединены в один корпус(наверно надо было сразу пояснитьКоэффициент теплоотдачи и теплопередачи в чем разница. Смотреть фото Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть картинку Коэффициент теплоотдачи и теплопередачи в чем разница. Картинка про Коэффициент теплоотдачи и теплопередачи в чем разница. Фото Коэффициент теплоотдачи и теплопередачи в чем разница)..
Дана математическая модель, но чтоб она заработала корректно необходимо в ее параметрах указать коэффицциенты теплопередачи и теплоотдачи генератора.
В описании к схеме дан лишь коэффициент теплообмена. Да скорее всего вы правы: это и есть коэффициент теплопередачи.
Теплоотдача генератора в описании не указана, как ее вычислить еще нужно разобраться..

P.S.Моей основной задачаей является разработка регулятора для холодильной машины. так что в физических принципах ее функционирования приходится разбираться самостоятельно Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть фото Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть картинку Коэффициент теплоотдачи и теплопередачи в чем разница. Картинка про Коэффициент теплоотдачи и теплопередачи в чем разница. Фото Коэффициент теплоотдачи и теплопередачи в чем разница

Источник

Теплоотдача радиаторов отопления — таблица сравнения чугунных, биметаллических, алюминиевых и стальных батарей

Теплоотдача радиатора отопления, это коэффициент, определяющий поступающее количество тепла от отопительного прибора в единицу времени и измеряется в Вт/(м²·К).

Технический параметр является основным показателем эффективности радиатора для создания комфортной климатической атмосферы в помещении. Величину данной характеристики изготовитель теплотехники обязан указывать в сопроводительной документации своих изделий.

Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть фото Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть картинку Коэффициент теплоотдачи и теплопередачи в чем разница. Картинка про Коэффициент теплоотдачи и теплопередачи в чем разница. Фото Коэффициент теплоотдачи и теплопередачи в чем разница

Мощность радиаторов отопления рассчитывают в ваттах. Некоторые производители заявляют на свою продукцию такой параметр, как мощность теплового потока, выраженную числом в кал/час. Чтобы перевести показатель в ватты, пользуются нормативом, где 1 Вт = 859,845 кал/час.

Теплопередачу одной секции или панели водяного отопления рассчитывают с учётом первичных и вторичных факторов. Сюда относятся материал изготовления, температура теплоносителя, площадь теплообмена, схема подключения прибора, его местоположение и др. Если батарея представляет собой несколько секций или не разборный панельный прибор, то мощность рассчитывается и указывается производителем сразу на всё изделие.

Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть фото Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть картинку Коэффициент теплоотдачи и теплопередачи в чем разница. Картинка про Коэффициент теплоотдачи и теплопередачи в чем разница. Фото Коэффициент теплоотдачи и теплопередачи в чем разница

Как рассчитать теплоотдачу радиаторов отопления на квадратный метр

В сопроводительной документации потребитель найдёт тепловую мощность одной секции или целой панели определённых габаритов. Данные параметры довольно относительные и на 100% доверять им не стоит. Они требуют дополнительной доводки до реальных величин. Чтобы это выяснить, необходимо сделать расчёт теплопроводности радиатора.

Прежде нужно избавиться от такого распространённого мнения, что алюминиевые батареи обладают самой высокой теплоотдачей по причине характеристики цветного металла. Сразу стоит возразить, что батареи изготавливают не из чистого алюминия, а из его сплава с кремнием – силумина, показатели которого значительно ниже.

Отчасти то же самое можно сказать о стальных, биметаллических и чугунных радиаторах. Указанные параметры мощности в паспорте отопительного прибора соответствуют истине, когда разница между средней температурой теплоносителя и температурой воздуха в помещении составляет 70 0 С. Такое явление называется температурным напором и обозначается знаком – Δt. Расчёт производят по формуле:

Δt = (tподачи + tобратки)/2 – t воздуха

Если следовать логике производителя, то результат расчёта должен равняться 70 градусам. Тогда, как среднюю температуру теплоносителя, можно рассчитать по формуле:

(tподачи + tобратки) = 2(Δt + t воздуха)

Например, основываясь на заявленной изготовителем тепловой мощности одной биметаллической секции – 200 Вт, Δt = 70 0 С, средней комнатной температуре – 22 0 С, получим результат:

(tподачи + tобратки) = 2(70 + 22) = 184 0 С

С учётом нормативной разницы в 20 градусов между подачей и обраткой определяют их значение по отдельности:

tподачи = (184 + 20)/2 = 102 0 С

tобратки = (184 — 20)/2= 82 0 С

Настоящий расчёт теплоотдачи показывает, что одна секция способна выдать 200 Вт при условии, что вода в подающей трубе должна кипеть, а в выпускной патрубок теплоноситель будет покидать с температурой 82 градуса.

Такое явление на практике просто невозможно. Дело в том, что бытовые водонагревательные котлы не способны нагреть воду выше 80 градусов. Даже при этих максимальных условиях, теплоноситель войдёт в радиатор с максимальной температурой около 77 0 С, а Δt составит примерно 40 0 С. Отсюда делают вывод, что реальная теплоотдача одной секции биметаллического радиатора будет не 200, а всего 100 Вт.

Чтобы упростить расчёт, можно воспользоваться таблицей теплоотдачи с понижающими коэффициентами. Для этого по вышеуказанной формуле, используя запланированную температуру в доме и теплоносителя, рассчитывают Δt.

Таблица значений понижающих коэффициентов

ΔtК
400,48
450,56
500,65
550,73
600,82
650,91
701

По таблице находят соответствующий коэффициент и умножают его на паспортную величину тепловой мощности 1 секции биметаллического радиатора. То, есть в рассматриваемом случае на обогрев 1 м 2 помещения придётся теплоотдача в размере 200 Вт х 0,48 = 96 Вт.

Для обогрева 10 м 2 площади потребуется приблизительно 1 кВт тепловой мощности, а нужное количество секций будет равно 1000/96 = 10,4 штук. Если в помещении два окна, то следует установить под ними две батареи по 10 и 11 секций каждая.

Нормы отпуска тепловой мощности

Во время проектирования систем теплоснабжения зданий и сооружений руководствуются нормативным документом СП 60.13330.2016. Свод правил регламентирует, в том числе, разработку систем внутреннего теплоснабжения в помещениях вновь возводимых и реконструируемых зданий и сооружений. СП был разработан на основе требований СНиПов ГОСТ 30494-2011 и ГОСТ 32415-2013. На их основе была принята норма отпуска тепловой мощности в размере 1 кВт для помещения площадью 10 кв.м., с высотой потолка до 3 метров, одной наружной стеной и одним окном.

При корректировке первоначальных условий обогрева помещения в ту или иную сторону (большая или меньшая площадь, другое количество окон и др.) для точного определения номинальной теплоотдачи в расчёт вводят поправочные коэффициенты:

К1 – строение окон

К2 – теплоизоляция стен

К4 – средняя температура зимой в помещении, градусов

К5 – количество наружных стен

К6 – помещение над комнатой

К7 – высота потолков, м

Окончательный результат делят на теплоотдачу одной секции радиатора. Частное округляют до целого числа в большую сторону (10,4 – 11 секций).

Сравнительные таблиц показателей теплоотдачи радиаторов разных видов

Оперируя характеристиками, специалисты в интернете публикуют различные таблицы тепловой мощности биметаллических, алюминиевых, стальных и чугунных радиаторов. Здесь представлены данные о тепловой мощности приборов отопления.

Сравнительная таблица теплоотдачи 1 секции радиаторов отопления в зависимости от рабочего давления, объёма и веса

Тип приборов с межосевым расстоянием 500 ммТепловая мощность, ВтРабочее давление. атмосферЁмкость, литрВес, кг
Алюминиевые180200,271,45
Биметаллические200200,201,2
Стальные120200,201,05
Чугунные140101,25,4

Сравнительная характеристики в зависимости от вида отопительных приборов

ХарактеристикиАлюминиевыеБиметаллическиеСтальныеЧугунные
СтроениеСекционноеСекционноеПанельноеСекционное
РазводкаБоковаяБоковаяБоковая/ВертикальнаяБоковая
Антикоррозионная стойкостьСредняяВысокаяСредняяВысокая
Вид теплоносителяВодаВода/антифризВода/антифризВода

Радиаторы отопления с лучшей теплоотдачей

Судя по многочисленным отзывам потребителей, проведённым специалистами испытаниям и сравнению их результатов, лучшими батареями по теплоотдаче следует признать биметалл. По мере убывания следует отнести теплоотдачу алюминиевых радиаторов, затем теплоотдачу стальных радиаторов. Последними в этой категории остаются отопительные приборы из чугуна.

Не последнюю роль в этом рейтинге играет роль материал изготовления изделий для обогрева помещений, их стоимость и качество используемого теплоносителя. Несмотря на превосходные качества биметаллических радиаторов, они всё же остаются самыми дорогими приборами. Выбор в пользу алюминиевых батарей будет наиболее оптимальным решением. Но их применение ограничивается условиями автономных систем отопления, где качество теплоносителя можно поддерживать на высоком уровне.

По этой же причине, но в обратную сторону, для установки в многоэтажных домах с централизованной сетью теплоснабжения они совершенно не годятся. Что касается стальных приборов, в теплоотдаче они быстры, как при нагреве, так и остывании.

И наконец, если потребителя не волнует эстетика внешнего вида приборов отопления и потребность в теплоотдаче невысокая, то идеальным решением будет установка чугунных батарей МС-140.

Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть фото Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть картинку Коэффициент теплоотдачи и теплопередачи в чем разница. Картинка про Коэффициент теплоотдачи и теплопередачи в чем разница. Фото Коэффициент теплоотдачи и теплопередачи в чем разница

Зависимость теплоотдачи радиатора от температуры теплоносителя

Паспортная тепловая мощность одной секции радиатора рассчитана для стандартных значений температуры теплоносителя на входе (90 0 С) и выходе (70 0 С) прибора отопления. Эти условия относятся к централизованным сетям теплоснабжения.

В автономных системах отопления частных домов температурный перепад может быть иным. В этом случае теплоотдача 1 секции может существенно отличаться от значений, заявленных производителем. Тепловая мощность отопительного прибора находится в прямой пропорциональной зависимости от температуры теплоносителя в подающем патрубке. Чем она больше, тем больше теплоотдача батареи и наоборот, чем меньше нагрев теплоносителя, тем меньше становится тепловая мощность радиатора.

Чтобы исключить неожиданные скачки температурного режима, применяют терморегуляторы, которые врезают в трубопровод на входе в радиатор. Термоголовки бывают ручной регулировки, полуавтоматические и автоматические, управляемые в онлайн режиме.

Источник

Глава 4. Теплопередача в химической аппаратуре, основные зависимости и расчетные формулы (стр. 3 )

Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть фото Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть картинку Коэффициент теплоотдачи и теплопередачи в чем разница. Картинка про Коэффициент теплоотдачи и теплопередачи в чем разница. Фото Коэффициент теплоотдачи и теплопередачи в чем разница
Испарительный теплообменник оконного кондиционера сделан из алюминия, с применением медных трубок.

Коэффициент теплоотдачи для разных материалов

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

База знаний по трехмерному проектированию в Pro/Engineer, Creo, Solidworks, электронике на STM32

Обучение САПР. Важные параметры некоторых материалов, используемые при тепловых расчетах

В этой таблице представлены такие важные параметры как Коэффициент теплопроводности λ
и
Удельная теплоемкость ср
, которые необходимы для проведения тепловых расчетов по статьям Creo 3. Расчет радиатора охлаждения с принудительной вентиляцией и Solidworks 2013. Тепловой расчет радиатора охлаждения с принудительной вентиляцией в Solidworks Simulation.

МатериалКоэффициент теплопроводности λ, Вт/(м•K)Удельная теплоемкость ср, Дж/(кг•K)
Алюминий (чистый)208 (при 25 °C) 216 (при 100 °C)902 (при 25 °C) 938 (при 100 °C)
Дюралюминий Д16130 (при 100 °C)922 (при 100 °C)
Cплав 2024 термообработка T4 или T351 (аналог дюралюминия Д16)121 (по данным matweb.com)875 (по данным matweb.com)
Cплав АМг6122 (при 100 °C)922 (при 100 °C)
Сплав АД31 (для охладителей)188 (при 100 °C)921 (при 100 °C)
Сплав 6063 термообработка T6 (аналог АД31)209 (SolidWorks) 200 (по данным matweb.com)900 (по данным matweb.com)
Медь М1 (для охладителей)387 (при 20 °C)390 (при 20 °C)
Медь С11000 или Cu-ETP DIN (аналог М1)388 (при 20 °C) 380 (при 100 °C) по данным matweb.com385 (по данным matweb.com)
Латунь ЛС59-1104,7 (при 20 °C)376,8 (при 100 °C)
Латунь Л63104,7 (при 20 °C)376,8 (при 100 °C)
Латунь C33500 или CuZn37 DIN (аналог Л63)115 (при 20 °C) по данным matweb.com
Сталь 12Х18Н10Т15 (при 25 °C) 16 (при 100 °C)462 (при 100 °C)
Сталь 321 (аналог 12Х18Н10Т)16,1 (при 100 °C) по данным matweb.com500 (при 100 °C) по данным matweb.com
Сталь 316L14,0-15,9 (по данным matweb.com)500 (при 100 °C) по данным matweb.com
Сталь 1057 (при 100 °C) по данным matweb.com494 (при 100 °C) по данным matweb.com
Сталь 1010 (аналог стали 10)49,8 (по данным matweb.com)448 (при 100 °C) по данным matweb.com

В следующей таблице представлены Коэффициенты конвекции h или α

(другое название
Коэффициенты конвективной теплоотдачи
и
Коэффициенты конвективной теплопередачи
), необходимые для оценочных расчетов

Влияние концентрации углерода

Концентрация углерода в стали влияет на величину теплопередачи:

Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.

Коэффициент теплоотдачи поверхность — воздух

В статье рассмотрен расчет мощности теплового потока от горизонтальных и вертикальных плоских поверхностей тела, помещенного в «безразмерное» воздушное пространство при принудительной и естественной конвекции с учетом радиационной составляющей теплоотдачи.
Зная коэффициент теплоотдачи на поверхности (α), разделяющей твердое тело и окружающее это тело воздушное пространство, очень просто определить мощность теплового потока (Q) по известной разности температур (Δt).

Q=α*A*Δt, Вт – мощность теплового потока от или к поверхности тела.

Основная сложность расчета заключается в определении коэффициента конвективной теплоотдачи (αк)! Автоматизировать в первую очередь решение этой трудоемкой задачи поможет Excel.

Нестабильность процесса естественной конвекции у поверхностей различной формы и расположения в пространстве породила большое разнообразие эмпирических формул для вычисления коэффициента конвективной теплоотдачи (αк). Неизбежные погрешности экспериментальных данных привели к тому, что результаты вычислений для одних и тех же поверхностей и условий по формулам разных авторов отличаются друг от друга на 20% и более.

После тщательного детального ознакомления с материалами современных западных изданий по теплообмену (список литературы – в конце статьи) были выбраны формулы, рекомендованные к применению большинством авторов, для использования в представленной далее программе в Excel.

Схемы теплообмена:

На представленных ниже рисунках показаны 8 вариантов схем, для которых программа может выполнить вычисления.

Розовый цвет пластин свидетельствует о том, что они горячее окружающего воздуха. Голубой цвет – пластины холоднее воздуха.

На схемах 1а и 1б воздух принудительно движется (вентилятор, ветер) вдоль поверхности пластины независимо от её ориентации в пространстве. На всех остальных схемах окружающий воздух находится в спокойном состоянии (помещение, полный штиль), а положение пластин сориентировано в пространстве.

Расчет в Excel:

Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть фото Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть картинку Коэффициент теплоотдачи и теплопередачи в чем разница. Картинка про Коэффициент теплоотдачи и теплопередачи в чем разница. Фото Коэффициент теплоотдачи и теплопередачи в чем разница

Формулы алгоритма программы:

t=(tв+tп)/2

l=L – для схем 1а и 1б

l=(B*L)/(2*(B+L)) – для схем 2а, 2б, 3а, 3б, 4а, 4б

Re=w*l

Gr=g*β*|tп tв|*l 3 /ν 2

Ra=Gr*Pr

Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть фото Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть картинку Коэффициент теплоотдачи и теплопередачи в чем разница. Картинка про Коэффициент теплоотдачи и теплопередачи в чем разница. Фото Коэффициент теплоотдачи и теплопередачи в чем разница

αк=Nu*λ/l

αр=ε*0,00000005670367*((tп+273,15) 4 — (tв+273,15) 4 )/(tп-tв)) – при tв *) αр= – при tв>tп

α=αк+αр

q=α*(tп-tв)

*) Нагрев поверхностей Солнцем или иными источниками теплового излучения программой игнорируется.

Вычисление теплофизических параметров воздуха и числа Нуссельта, как видно из вышеприведенных формул, являются ключевыми и самыми трудоемкими при определении конвективного коэффициента теплоотдачи.

Тестирование программы проводилось на примерах из книг, представленных в конце статьи. Отклонения результатов в основном не выходили за пределы ±5%.

Замечание:

В отечественной теплотехнической литературе для решения рассмотренных задач широко используются формулы второй половины прошлого века М.А. Михеева и В.П. Исаченко, которые в современной западной литературе не упоминаются. Беглый сравнительный анализ результатов расчетов по формулам разных авторов дал противоречивые и неоднозначные ответы. Если при принудительной конвекции результаты фактически идентичны, то при естественной конвекции отличаются порой на 30% и более, но иногда почти совпадают…

Литература:

Прошу уважающих труд автора скачать файл с программой после подписки на анонсы статей!

Значение в быту и производстве

Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:

Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.

P. S. (01.11.2020)

Дополнение по естественной конвекции у вертикальной поверхности:

Если построить графики по вышеприведенным формулам Черчилля и Чу для числа Нуссельта при естественной конвекции у вертикальной изотермической поверхности (схемы 2а и 2б), то можно увидеть, что при Ra=10 9 кривые не совпадают!

Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть фото Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть картинку Коэффициент теплоотдачи и теплопередачи в чем разница. Картинка про Коэффициент теплоотдачи и теплопередачи в чем разница. Фото Коэффициент теплоотдачи и теплопередачи в чем разница

Еще один нюанс, который встретился только у Линхардов в [1]: «свойства флюида следует оценивать при t=(tв+tп)/2 за одним исключением, если флюид – газ, то коэффициент объемного расширения β следует определять при t=tв». Но сами авторы зависимостей Черчилль и Чу о таком условии ничего не пишут. По этому поводу в их статье [7], говорится, что «для больших температурных перепадов, когда физические свойства существенно различаются, Ид рекомендует оценивать физические свойства как средние значения температуры поверхности и объема, а Уайли дает более подробные теоретические указания для режима ламинарного пограничного слоя».

Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть фото Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть картинку Коэффициент теплоотдачи и теплопередачи в чем разница. Картинка про Коэффициент теплоотдачи и теплопередачи в чем разница. Фото Коэффициент теплоотдачи и теплопередачи в чем разница

Как видно из графика при температуре среды — воздуха tв=20°C=293,15K и при перепаде температур поверхности и воздуха Δt=|tп tв| 90 °C расхождение результатов быстро нарастает.

Правы Линхарды или множество других авторов, рассчитывающих все свойства флюидов при одном значении определяющей температуры t=(tв+tп)/2? Однозначного ответа у меня нет.

(По материалам Обри Джаффера [8].)

Что представляет собой биметаллический радиатор

По сути, биметаллический обогреватель представляет собой смешанную конструкцию, воплотившую преимущества стальных и алюминиевых систем отопления. Устройство радиатора основывается на следующих элементах:

В качестве подтверждения высокой теплоотдачи биметаллического корпуса можно использовать сравнительную таблицу. Среди ближайших конкурентов – радиаторов из чугуна ЧГ, стали ТС, алюминия АА и АЛ, биметаллический радиатор БМ обладает одним из наилучших показателей теплоотдачи, высоким рабочим давлением и коррозионной стойкостью.

Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть фото Коэффициент теплоотдачи и теплопередачи в чем разница. Смотреть картинку Коэффициент теплоотдачи и теплопередачи в чем разница. Картинка про Коэффициент теплоотдачи и теплопередачи в чем разница. Фото Коэффициент теплоотдачи и теплопередачи в чем разница

В реальности дела обстоят еще хуже, большинство производителей указывает величину теплоотдачи в виде значения тепловой мощности в час для одной секции. То есть, на упаковке может быть указано, что теплоотдача биметаллической секции радиатора составляет 200 Вт.

Делается это вынужденно, данные приводят не к единице площади или перепаду температур в один градус, для того чтобы упростить восприятие покупателем конкретных технических характеристик теплоотдачи радиатора, одновременно сделав маленькую рекламу.

Как улучшить теплоотдачу

Указанный коэффициент мощности конвектора в его техпаспорте, имеет место быть, практически при идеальных условиях. На деле, величина теплового потока несколько снижена,и это обусловлено большими теплопотерями.

В первую очередь, для повышения коэффициента необходимо уменьшить потерю тепла – провести работы по утеплению дома, особое внимание, уделив крыше, так как через нее уходит около 70% теплого воздуха и оконным и дверным проемам.

Сравнение показателей: анализ и таблица

Помимо материала, из которого изготовлен прибор, на коэффициент мощности влияет межосевое расстояние – высота между осями верхнего и нижнего выходов. Также существенное влияние на КПД оказывает величина теплопроводности.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *