гомеоморфно что это значит
Гомеоморфизм
Смотреть что такое «Гомеоморфизм» в других словарях:
гомеоморфизм — гомеоморфизм … Орфографический словарь-справочник
гомеоморфизм — сущ., кол во синонимов: 1 • гомеоморфность (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
гомеоморфизм — Морфологическое и иное сходство различных организмов, не связанных между собой непосредственным родством, обусловленное обитанием в сходных условиях; Г. является одним из проявлений конвергенции. [Арефьев В.А., Лисовенко Л.А. Англо русский… … Справочник технического переводчика
Гомеоморфизм — Не следует путать с гомоморфизмом. Классический пример гомеоморфизма: кружка и тор топологически эквивалентны Гомеоморфизм (греч … Википедия
Гомеоморфизм — Митчерлих считал первоначально, что соответственные углы изоморфных кристаллов абсолютно тождественны. Волластон, однако, уже ранее показал, что ромбоэдрические углекислые шпаты, признанные Митчерлихом изоморфными, обладают близко похожими, но не … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
гомеоморфизм — гомеоморфизм, гомеоморфизмы, гомеоморфизма, гомеоморфизмов, гомеоморфизму, гомеоморфизмам, гомеоморфизм, гомеоморфизмы, гомеоморфизмом, гомеоморфизмами, гомеоморфизме, гомеоморфизмах (Источник: «Полная акцентуированная парадигма по А. А.… … Формы слов
ГОМЕОМОРФИЗМ — взаимно однозначное соответствие между двумя топологич. пространствами, при к ром оба взаимно обратных отображения, определяемые этим соответствием, непрерывны. Эти отображения наз. гомеоморфными, или топологическими, отображениями, а также… … Математическая энциклопедия
гомеоморфизм — гомеоморф изм, а … Русский орфографический словарь
Гомеоморфизм
Гомеоморфи́зм (греч. ομοιο — похожий, μορφη — форма) — это взаимно-однозначное и непрерывное отображение, обратное к которому тоже непрерывно. Иными словами, это биекция, связывающая топологические структуры двух пространств (в силу непрерывности биекции, образы и прообразы отображения являются открытыми множествами, определяющими топологии соответствующих пространств).
Пространства, связанные гомеоморфизмом, топологически неразличимы.
Содержание
Определение
Пусть и
— два топологических пространства. Функция
называется гомеоморфизмом, если она взаимно однозначна, а также
и
непрерывны.
Пространства и
в таком случае называются гомеомо́рфными или топологи́чески эквивале́нтными.
Теорема о гомеоморфизме
Пусть — интервал на числовой прямой (открытый, полуоткрытый или замкнутый). Пусть
— биекция. Тогда
является гомеоморфизмом тогда и только тогда, когда
строго монотонна и непрерывна на
Пример
Произвольный открытый интервал гомеоморфен всей числовой прямой
. Гомеоморфизм
задаётся, например, формулой
См. также
Литература
Полезное
Смотреть что такое «Гомеоморфизм» в других словарях:
гомеоморфизм — гомеоморфизм … Орфографический словарь-справочник
гомеоморфизм — сущ., кол во синонимов: 1 • гомеоморфность (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
гомеоморфизм — Морфологическое и иное сходство различных организмов, не связанных между собой непосредственным родством, обусловленное обитанием в сходных условиях; Г. является одним из проявлений конвергенции. [Арефьев В.А., Лисовенко Л.А. Англо русский… … Справочник технического переводчика
Гомеоморфизм — (от Гомео. и греч. morphe вид, форма) одно из основных понятий топологии. Две фигуры (точнее, два топологических пространства) называются гомеоморфными, если существует взаимно однозначное непрерывное отображение любой из них на другую … Большая советская энциклопедия
Гомеоморфизм — Митчерлих считал первоначально, что соответственные углы изоморфных кристаллов абсолютно тождественны. Волластон, однако, уже ранее показал, что ромбоэдрические углекислые шпаты, признанные Митчерлихом изоморфными, обладают близко похожими, но не … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
гомеоморфизм — гомеоморфизм, гомеоморфизмы, гомеоморфизма, гомеоморфизмов, гомеоморфизму, гомеоморфизмам, гомеоморфизм, гомеоморфизмы, гомеоморфизмом, гомеоморфизмами, гомеоморфизме, гомеоморфизмах (Источник: «Полная акцентуированная парадигма по А. А.… … Формы слов
ГОМЕОМОРФИЗМ — взаимно однозначное соответствие между двумя топологич. пространствами, при к ром оба взаимно обратных отображения, определяемые этим соответствием, непрерывны. Эти отображения наз. гомеоморфными, или топологическими, отображениями, а также… … Математическая энциклопедия
гомеоморфизм — гомеоморф изм, а … Русский орфографический словарь
ГОМЕОМОРФИЗМ
— взаимно однозначное соответствие между двумя топологич. пространствами, при к-ром оба взаимно обратных отображения, определяемые этим соответствием, непрерывны. Эти отображения наз. гомеоморфными, или топологическими, отображениями, а также гомеоморфизмами, а о пространствах говорят, что они принадлежат одному топологическому типун наз. гомеоморфными, или топологически эквивалентными. Они являются изоморфными объектами в категории топологич. пространств и непрерывных отображений. Следует отличать Г. от уплотнения (в к-ром непрерывность обязательна только в одну сторону); однако уплотнение бикомпакта на хаусдорфово пространство является Г.
Примеры. 1) Функция устанавливает Г. между числовой прямой и интервалом ; 2) замкнутый круг гомеоморфен любому замкнутому выпуклому многоугольнику; 3) трехмерное проективное пространство гомеоморфно группе вращений пространства R 3 вокруг начала и также пространству единичных касательных векторов к сфере ; 4) все бикомпактные нульмерные группы со счетной базой гомеоморфны канторову множеству; 5) бесконечномерные и сепарабельные банаховы пространства и даже пространства Фреше гомеоморфны между собой; 6) сфера и тор негомеоморфны.
Другая проблема состоит в топологической характер и заци и отдельных пространств и классов пространств (т. е. их указания характеристических топологич. свойств, формулируемых на языке аксиом топологии). Она решена, напр., для одномерных многобразий, двумерных многообразий, канторова множества, кривой Серпинского, кривой Менгера, псевдодуги, пространства Бэра и др. Универсальный метод для топологич. характеризации пространств дают спектры. С их помощью получена теорема Александрова о Г. (см. [4]). Последовательностью измельчающихся подразделений охарактеризована сфера и вообще класс локально евклидовых пространств (см. [5]). Посредством спектров дано описание локально бикомпактных групп (см. [6]). Другой метод состоит в рассмотрении различных алгебраич. структур, связанных с отображениями. Так, бикомпактное пространство совпадает с пространством максимальных идеалов алгебры действительных функций, заданных на нем.
Многие пространства характеризуются полугруппой непрерывных отображений в себя (см. Гомеоморфизмов группа). В общей топологии дается топологич. описание многих классов топологич. пространств. Представляет интерес также характеризация пространств внутри данного класса. Напр., очень полезно описание сферы как компактного многообразия, покрытого двумя открытыми клетками. Мало разработан вопрос об алгоритмич. распознавании пространств. Напр., он не решен (к 1977) для сферы при
Еслп два пространства гомеоморфны, то для установления Г. общее значение имеет лишь метод спектров (и измельчающихся подразделений). С другой стороны, в том случае, когда построена классификация, вопрос решается сравнением инвариантов. На практике установление Г. часто оказывается очень трудной геометрич. задачей, к-рую приходится решать специальными средствами. Так, Г. евклидова пространства и нек-рых его факторпространств устанавливается с помощью псевдоизотопии.
Virtual Laboratory Wiki
In the coming weeks, this wiki’s URL will be migrated to the primary fandom.com domain. Read more here
Гомеоморфизм
ПОВЕРХНОСТЬ КУБА И СФЕРА гомеоморфны, т.е. могут быть переведены друг в друга топологическим преобразованием, но ни поверхность куба, ни сфера не гомеоморфны тору (поверхности «бублика»). http://dic.academic.ru/dic.nsf/enc_colier/6344/ТОПОЛОГИЯ
1) устанавливаемое им соответствие между точками из S и S’ взаимно однозначно, т.е. каждой точке p из S соответствует только одна точка p’ из S’ и в каждую точку p’ отображается только одна точка p;
2) отображение взаимно непрерывно (непрерывно в обе стороны), т.е. если заданы две точки p, q из S и точка p движется так, что расстояние между ней и точкой q стремится к нулю, то расстояние между соответствующими точками p’, q’ из S’ также стремится к нулю, и наоборот.
Геометрические фигуры, переходящие одна в другую при топологических преобразованиях, называются гомеоморфными. Окружность и граница квадрата гомеоморфны, так как их можно перевести друг в друга топологическим преобразованием (т.е. изгибанием и растяжением без разрывов и склеиваний, например, растяжением границы квадрата на описанную вокруг него окружность). Сфера и поверхность куба также гомеоморфны.
Чтобы доказать гомеоморфность фигур, достаточно указать соответствующее преобразование, но тот факт, что для каких-то фигур найти преобразование нам не удается, не доказывает, что эти фигуры не гомеоморфны. Здесь помогают топологические свойства.
Фоменко
с.144- Человеческая фигура», например, под действием гомеоморфизма может измениться до неузнаваемости, однако сохранит свои основные топологические характеристики.
См. также
Гомеоморфизм: топологический и семантический (пример «Инновац. линз»)
Гомеоморфно
Разница между аналогами и гомологами. Аналоги – крылья бабочки и крылья птицы – выполняют одинаковую функцию, но природа разная cf. крылья птицы, передние плавники рыбы, передние ноги лани – гомологи – ф҃ция разная, а природа одна.
[Wikipedia: Топология – картинка: кружка превращается в бублик]
Для преобразования тел мы используем пластилин, который не липнет к рукам и можно растягивать как угодно. Тогда из «блина» с толщиной можно сделать шар. Если одну фигуру можно так трансформировать в другую – они гомеоморфны. E.g. шар и куб.
Буквы: А + Д; Ь + Б; У + Y; K + К; В + 8;
Преобразование – гомеоморфизм; явление – гомеоморфи́я.
Любой гомеоморф круга – «лоскут». Е.г. футбольный мяч – из 32х лоскутов.
Компактное двумерное многообразие без края – то, что можно склеить из конечного числа лоскутов (поверхность). e.g. лоскутное одеяло, футбольный мяч.
Тор –одновременно и трёхмерная «баранка», и её поверхность.
Гомеоморф шара – комок. Всё, что можно сложить из конечного числа комков – компактное трёхмерное многообразие с краем.
Компактное трёхмерное многообразие без края.
Его нельзя увидеть, но можно понять, что оно возможно.
Односвязный
Односвязная поверхность. Канцелярская резинка, обладающая свойствами:
1. не может соскочить с поверхности
2. стремиться свернуться в точку [но на поверхности баранки – не всегда сможет; если сможет – тело односвязное]
3. готова даже растянуться ради того, чтобы потом стянуться в точку
e.g. Колба от песочных часов (сфера) – у неё есть талия. Помещаем резинку. Для того чтобы сжаться в точку – ей нужно расшириться.
Трёхмерное тело – тоже м.б. односвязным. E.g. Шар. Шар с полостью внутри – односвязен, ибо резинка может её обойти.
Если заменить в ГП слово трёхмерное на двумерное:
«Всякое односвязное двумерное компактное многообразие без края (поверхность шара) гомеоморфно двумерной сфере». – и так ясно.
Значение
Методы, применённые Переляманом – совершенно неожиданные. Методы дифференциальной геометрии.
Космлогическое значение. Интересно, какой тот мир, в котором мы живём.
Если бы люди не понимали, что такое шар – они бы не осознали Землю, как шар.
Г.Ўэллс – человек, который был зеркально перевёрнут. Рассказ.