глюкоза что делает в организме человека
Лабораторная диагностика сахарного диабета
Структура статьи
Сахарный диабет и его признаки
Светлана Филипповна, что такое сахарный диабет и каковы его признаки?
В переводе с греческого сахарный диабет (СД) – «проходить сквозь…». СД проявляется утомляемостью, жаждой, выделением большого количества мочи, приводит к относительному обезвоживанию и нарушению энергетического обмена в организме.
СД делится на два типа:
1-й тип (инсулинозависимый) связан с нехваткой инсулина – гормона, вырабатываемого В-клетками островков Лангерганса поджелудочной железы. В этих условиях концентрация глюкозы в крови резко возрастает, не имея возможности проникнуть в клетки.
2-й тип (инсулиннезависимый) характеризуется тем, что инсулина вырабатывается почти достаточно, но клетки к нему нечувствительны и глюкоза также не имеет возможности проникнуть в клетки, так как инсулин не оказывает своего эффекта. Этот феномен называется инсулиновой резистентностью.
Также бывает так называемый «спящий диабет», который обнаруживается только при лабораторном обследовании.
Роль глюкозы в организме
Давайте поговорим непосредственно о глюкозе. Какую роль она играет в организме?
Глюкоза – осмотически активное вещество. Это означает, что при возрастании ее содержания в крови, вода из тканей поступает в кровь, что приводит к относительному обезвоживанию (дегидратации). Чтобы компенсировать этот опасный потенциальный эффект, почки начинают выводить глюкозу с мочой (обычно это 10,0 –11,0 ммоль/л – почечный порог). При этом организм теряет важный источник энергии, который представляет собой глюкоза. У каждого свой почечный порог, который важно знать.
Несмотря на значительные колебания в поступлении и утилизации глюкозы в течение дня, ее уровень в крови обычно не поднимается выше 8,0 и не опускается ниже 3,5 ммоль/л, нормальное содержание глюкозы в крови натощак 3,5-5-6 ммоль/л, не натощак – 3,5-8.0 ммоль/л.
Алгоритм обследования
Светлана Филипповна, каким образом можно выявить сахарный диабет?
В диагностике СД важную роль играют лабораторные методы исследования и правильная их интерпретация.
Существует определенный алгоритм обследования сахарного диабета. Здоровые люди с нормальной массой тела и неотягощенной наследственностью исследуют уровень глюкозы в крови и моче (натощак).
При получении нормальных значений дополнительно обязательно сдается анализ на гликилированный гемоглобин (ГГ). Около 5-8 % гемоглобина, находящегося в эритроцитах, присоединяет к себе молекулу глюкозы, поэтому такие молекулы называют гликированными. Степень гликирования зависит от концентрации глюкозы, которая сохраняется в эритроцитах на протяжении всей их 120-дневной жизни (норма 4,5 –6,5 % от общего количества гемоглобина). Поэтому в любой конкретный момент времени процент гликированного гемоглобина отражает средний уровень концентрации глюкозы в крови пациента на протяжении 2-3 месяцев, предшествующих исследованию. При контроле терапии диабета рекомендуется поддерживать уровень гликированного гемоглобина менее 7 % и пересматривать терапию при уровне ГГ 8 %.
При получении высокого уровня гликированного гемоглобина (скрининг у здорового пациента) рекомендуется определить уровень глюкозы в крови через 2 часа после нагрузки глюкозой (75 г). Этот тест особенно необходим, если уровень глюкозы в крови хотя и выше нормального, но недостаточно высок, чтобы проявлялись признаки диабета. Тест проводят утром, после ночного голодания (не менее 12 часов). Определяют исходный уровень глюкозы и через 2 часа после приема 75 г глюкозы, растворенной в 300 мл воды. В норме (сразу после нагрузки глюкозой) ее концентрация в крови возрастает, что стимулирует секрецию инсулина. Это в свою очередь снижает концентрацию глюкозы в крови, через 2 часа ее уровень практически возвращается к исходному у здорового человека и не возвращается к норме, превышая исходные значения в два раза у пациентов с сахарным диабетом.
Еще раз хотелось бы отметить, что именно инсулин (гормон поджелудочной железы) участвует в поддержании постоянного уровня глюкозы в крови (степень его секреции определяется уровнем глюкозы). Инсулин необходим для дифференциации различных форм диабета. Так, СД первого типа характеризуется низким уровнем инсулина, второго типа – нормальным или повышенным.
Определение инсулина применяется для подтверждения диагноза у людей с пограничными нарушениями толерантности к глюкозе. В норме уровень инсулина равен 15-180 пмоль/л (2-25 мкед/л).
Важные анализы
Какие дополнительные исследования необходимо проводить для диагностики сахарного диабета?
Не менее важным является определение С-пептида. Инсулин и С-пептид являются конечными продуктами преобразования проинсулина в бета-клетках островков поджелудочной железы. Определение С-пептида обеспечивает контроль за функционированием бета-клеток поджелудочной железы и продукцией инсулина. Диагностически значимо то, что именно С-пептид позволяет оценить уровень инсулина и более четко подобрать необходимую (недостающую) дозу инсулина. Если С-пептид в крови снижается, то это говорит о недостаточности инсулина, вырабатываемого особыми клетками поджелудочной железы. В норме уровень С-пептида равен 0,5 – 2,0 мкг/л.
В настоящее время большое внимание уделяется определению антител к бета-клеткам островков Лангерганса, наличие которых ведет к разрушению самих клеток и нарушению синтеза инсулина, следствием чего и является появление СД 1 типа. Аутоиммунные механизмы разрушения клеток могут иметь наследственную природу, как впрочем, могут запускаться и рядом внешних факторов, таких как вирусные инфекции, различные формы стресса и воздействие токсических веществ.
Таким образом, определение антител к бета-клеткам может быть использовано для ранней диагностики и выявления предрасположенности к СД 1 типа. У пациентов с наличием аутоантител наблюдается прогрессивное снижение функции бета-клеток и секреции инсулина.
Антитела к инсулину находят у 35-40 % пациентов с выявленным впервые диабетом 1 типа. Антитела к инсулину могут наблюдаться в стадии преддиабета.
Найден и антиген, представляющий главную мишень для аутоантител, связанных с развитием инсулинзависимого диабета. Этим антигеном оказалась декарбоксилаза глютаминовой кислоты (gad) – очень информативный маркер для диагностики преддиабета. Антитела к GAD могут определяться у пациента за 5-7 лет до клинического проявления болезни. Важно следующее: определение этих маркеров позволяет в 97 % случаев дифференцировать СД 1 типа от 2 типа, когда клиника сахарного диабета 1 типа маскируется под 2 тип.
И, наконец, сигнальный маркер веса тела – лептин, который образуется в жировых клетках. Он дает сигнал мозгу прекратить потребление пищи и увеличить расход энергии. Однако этот механизм нарушается при большом избытке веса. У таких людей слишком много жировых клеток, выделяющих лептин, и его уровень значительно повышается с каждым лишним граммом веса. Когда лептина в крови становится слишком много, он перестает играть свою сигнальную функцию.
Помните всегда о том, что своевременная диагностика позволит вам избежать проблем со здоровьем. Клинико-биохимическая лаборатория МК ЦЭЛТ выполняет широкий спектр анализов, а современный уровень оснащения, квалификация специалистов и сроки выполнения исследований гарантируют высокое качество и надежность.
Не забываем про диету
Светлана Филипповна, не могли бы Вы, напоследок, предложить вариант диеты для людей, страдающих сахарным диабетом?
Глюкоза – самый простой углевод
Глюкоза, или виноградный сахар – самый простой углевод. Она может поступать в организм с пищей, а может вырабатываться в нем в процессе распада более сложных углеводов (сахарозы, крахмала).
Основные источники глюкозы – продукты питания, богатые углеводами. Углеводы условно можно разделить на «хорошие» («медленные») и «плохие» (их также иногда называют «пустыми» или «быстрыми»).
Источники «хороших» углеводов: крупы, бобовые, овощи, фрукты, хлеб из ржаной или цельнозерновой муки, макароны из твердых сортов пшеницы – все те продукты, которые помимо углеводов содержат клетчатку, витамины, микроэлементы, растительный белок. Их усвоение организмом происходит постепенно, не приводит к быстрому скачку глюкозы в крови и тем самым не перегружает поджелудочную железу. «Плохие» углеводы содержатся в выпечке, сладостях, кондитерских изделиях, сладких соках и газировке. Они мгновенно насыщают кровь глюкозой, что заставляет поджелудочную железу выделять слишком много инсулина разом — впоследствии это может стать причиной нечувствительности клеток к нему.
Глюкоза обеспечивает клетки энергией, участвует в обменных процессах (например, помогает усваивать белок для строительства мышц), откладывается в печени и мышцах в виде гликогена, который составляет своеобразный неприкосновенный запас организма на случай голода. Особенно необходима глюкоза для функционирования мозга. Вовремя и после еды глюкоза поступает из пищеварительной системы в кровоток, уровень сахара в крови повышается. Чтобы она попала в клетки, поджелудочная железа выделяет гормон инсулин — именно это вещество делает клетки готовыми к приему глюкозы. По мере того как клетки получают глюкозу, уровень сахара в крови понижается до постоянной нормы.
В этом процессе могут возникать неполадки. Если поджелудочная железа выделяет мало инсулина или же клетки нечувствительны к его воздействию, то глюкоза в них не поступает, а остается в крови: клетки остаются голодными, а показатель сахара в крови — повышенным. Тогда и возникает грозное заболевание — сахарный диабет: I типа, если его причина — нехватка инсулина, и II типа — если инсулина достаточно, но клетки к нему резистентны.
При голодании более суток или после тяжелых физических и нервных нагрузок в организме, или когда человек находится на постоянной низкоуглеводной диете, в организме может запуститься глюкогенез – синтез глюкозы из молочной кислоты (она образуется в мышцах и эритроцитах после тяжелой нагрузки), глицерола (возникает после ферментации жировой ткани), аминокислот (они получаются в результате распада мышечных тканей или поступающих в организм белков). Глюкогенез из аминокислот опасен для здоровья и даже жизни, ведь он может разрушать сердце, гладкую мускулатуру кишечника, кровеносные сосуды.
Хроническая нехватка сахара в крови называется гипогликемией. Это состояние опасно для нервных клеток и мозга: недополучая глюкозы, они не могут правильно функционировать, в итоге возможно даже органическое поражение.
При гипергликемии — так называется избыток глюкозы — излишки этого вещества откладываются в тканях, вызывая их повреждения. Особенно страдают от этого сердце, сосуды, почки и глаза.
Концентрация глюкозы в крови, или, иначе, сахар крови – важный биохимический показатель: его нужно регулярно проверять, чтобы знать, не грозит ли вам сахарный диабет. Сейчас в мире 400 млн людей, страдающих от этого тяжелого хронического заболевания, а к 2030 году, по данным ВОЗ, сахарный диабет станет 7-м в списке самых частых причин смерти.
Профилактика гипер- и гипогликемии
Чтобы сахар крови всегда был в норме, необходимо:
— поддерживать стабильную нормальную массу тела
— правильно питаться, употребляя достаточное количество овощей, фруктов и зелени давать организму достаточный уровень физической нагрузки – например, ходить пешком с шагомером (не менее 8 тысяч шагов в день).
Как нормализовать сахар крови с помощью питания
При гипергликемии необходимо ограничить углеводы. Полностью исключить рекомендуется: сахар, сладкие напитки, белый хлеб, выпечку, кондитерские изделия, картофель, белый рис, манную крупу, вино. А вот овощей и зелени употреблять нужно побольше. При гипогликемии нужно увеличить потребление белка. Наши друзья — орехи, бобовые, молочные продукты, нежирное мясо и птица, рыба, гречневая крупа.
Уровень сахара в крови: норма, установленная ВОЗ для здоровых людей
Уровень сахара в крови меняется в течение дня, в зависимости от потребления пищи. После еды он повышается, утром после пробуждения – самый низкий. При некоторых заболеваниях происходит нарушение регуляции. Сахара обеспечивает энергоснабжение клеток. Углеводы, поглощаемые с пищей, попадают в кишечник, расщепляются на более мелкие молекулы сахара и всасываются в кровоток. Гормон, продуцируемый поджелудочной железой, инсулин, обеспечивает его всасывание. Он является главным поставщиком энергии для клеток, в какой-то мере их «топливом». Без инсулина сахар в крови не может правильно усваиваться.
Кому нужно проводить измерения уровня сахара в крови?
Люди, чья поджелудочная железа не вырабатывает достаточного количества инсулина, страдают от сахарного диабета. Уровень сахара в крови чаще всего слишком высок. Это может навсегда повредить кровеносные сосуды и органы. В то же время в клетках существует нехватка энергии.
Диабет во время беременности
В период вынашивания ребенка определенные гормоны могут вызвать повышение уровня сахара в крови в организме женщины. Поджелудочная железа может перестать вырабатывать инсулин в соответствии с возросшей потребностью. Подобные изменения в организме приводят к развитию диабета.
Симптомы этого заболевания обычно исчезают после рождения ребенка, но примерно у трети женщин, перенесших диабет во время беременности, в дальнейшей жизни развивается диабет 2-го типа. Гестационный диабет нельзя лечить пероральными лекарствами из-за боязни навредить плоду.
В тех случаях, когда проблема не поддается лечению правильным питанием и физическими упражнениями, вводят инсулин для снижения высокого уровня сахара. Предварительная консультация с врачом в данном случае является обязательным условием.
Как измеряется уровень сахара в крови?
Для проведения исследования осуществляется забор капиллярной крови. Для этого обычно используется набор глюкометров, состоящий из измерительного прибора, тест-полоски и колющего инструмента со сменными ланцетами.
Капиллярную кровь можно получить с помощью колющего средства путем укола в палец – у младенцев в пятку. Тест-полоска помещается в глюкометр и соприкасается с капиллярной кровью. Примерно через 5-30 секунд устройство показывает результат.
Нормы сахара в крови
Нормальное значение, мг/дл (ммоль/л)
Усредненное содержание глюкозы (за 3 месяца)
Через 2 часа после еды
Таблица – Нормальные значения у детей в зависимости от приема пищи
65-99 мг/дл (3,6-5,5 ммоль/л)
Усредненное содержание глюкозы (за 3 месяца)
Через 2 часа после еды
80-126 мг/дл (4,5-7,0 ммоль/л)
Важно: значения могут варьироваться в зависимости от того, какая кровь используется (плазма, венозная или капиллярная).
Нормы в зависимости от половой принадлежности и возраста
Норма глюкозы у женщин составляет 3,3-5,5 ммоль/л. Возрастные изменения у женщин, начиная от 50 лет, формируют другие показатели.
Таблица – Уровень сахара в крови норма у женщин
Возраст женщины, лет
Норма глюкозы в составе крови у мужчин варьирует от 3,9 до 5,6 ммоль/л. Если пациент не ел в течение 7-8 часов до анализа, норма после еды варьируется от 4,1 до 8,2 ммоль/л. При случайном, временном отборе крови без отношения к потреблению пищи показатели варьируются от 4,1 до 7,1 ммоль/л.
Возраст мужчины, лет
Таблица – Нормы у детей в зависимости от возраста
Уровень глюкозы, ммоль/л
Если уровень сахара в крови слегка завышен, не стоит беспокоиться, а только скорректировать собственное питание, удалить из рациона вредные продукты, скорректировать собственный режим сна и стресса (психологический, физический) и тем самым вернуть уровень глюкозы в норму.
Чтобы предотвратить переход сахарного диабета в сложную форму, требующую постоянного приема инсулина, необходимо научиться контролировать болезнь. Новейшие препараты помогают избавиться от диабета на клеточном уровне: восстанавливают выработку инсулина (который нарушается при диабете типа 2) и регулируют синтез этого гормона (это важно для диабета типа 1).
Методы диагностики
Уровень сахара в крови определяется с использованием глюкометра – портативного устройства, с помощью которого можно провести анализ в домашних условиях. Измерение уровня сахара в крови дома с помощью глюкометра следует проводить в течение всего дня, чтобы ситуаций отклонения.
Желательно проводить процедуру перед едой и перед сном, а также после пробуждения с утра. Иногда также необходимо сделать измерения после еды, примерно через 1-2 часа, чтобы получить оценку того, как пища влияет на уровень сахара в организме – индивидуальный эффект, который варьируется от человека к человеку.
Иногда уровень сахара в крови также измеряют посреди ночи – между 4-3 часами, чтобы обнаружить условия падения сахара и гипогликемии, характерные для людей с диабетом 1 типа, которые лечатся инсулином, а также узнать, каково изменение, характеризующее уровень сахара в этих ситуациях.
Тем не менее, домашний тест не всегда показывает точные результаты, поэтому оптимально провести анализ в лаборатории медицинского учреждения. Кроме того, врачи назначают анализ для определения толерантности к глюкозе и исследование гликированного гемоглобина. При анализе толерантности к глюкозе диагностируется чувствительность к инсулину и способность организма воспринимать его.
Глюкоза что делает в организме человека
Все биологические процессы, происходящие в окружающем мире, по своей сути являются химическими реакциями. Первую химическую реакцию человек осуществил, когда разжег костер – это реакция горения. Первое антибактериальное применение продуктов брожения и величайшее открытие в области медицины совершил Нострадамус. Большинство из нас знает его как предсказателя, но его основная заслуга состоит в том, что он нашел способ борьбы с чумой с помощью уксусной кислоты. История свидетельствует, чума лишила Нострадамуса и первой семьи, и друзей. С тех пор он искал средство борьбы от страшной болезни. Найдя чудо-лекарство, исследователь переезжал из города в город, где появлялась чума, спасая множество жизней [1].
Первым биохимиком была клетка, которая научилась энергетическому обмену: научилась поглощать свет и выделять энергию, необходимую для жизнеобеспечения. Таким образом, первый биохимик – это и есть сама жизнь. Все процессы, которые протекают в клетках живого организма, – это биохимические реакции.
Название «углеводы» появилось из-за того, что многие представители данного класса имеют общую формулу: Сn(Н2О)m, где n и m >= 4. Известно множество углеводов, не соответствующих этой формуле, но несмотря на это термин «углеводы» употребляется и по сей день. Другое общепринятое название этого класса соединений – сахара.
Все углеводы можно разделить на четыре больших класса.
Моносахариды – это гетерофункциональные соединения, содержащие оксогруппу и несколько гидроксильных групп. Они не могут быть гидролизованы до более простых форм углеводов и являются структурной единицей любых углеводов, например, глюкоза, фруктоза, рибулоза, рамноза. Содержатся в различных продуктах: фрукты, мёд, некоторые виды вина, шоколад.
Олигосахариды – это соединения, построенные из нескольких остатков моносахаридов, связанных между собой гликозидной связью. Они делятся по числу моносахаридов в молекуле на дисахариды, трисахариды и т.д. К биологически активным производным олигосахаридов относятся некоторые антибиотики, сердечные гликозиды.
Дисахариды – это углеводы, которые при гидролизе дают две одинаковые или различные молекулы моносахарида и связаны между собой гликозидной связью, например, лактоза, сахароза, мальтоза. При гидролизе из дисахаридов образуется глюкоза.
Полисахариды – имеют общий принцип строения с олигосахаридами, за исключением моносахаридных остатков – полисахариды могут содержать их сотни и даже тысячи. Примеры: крахмал, гликоген, хитин, целлюлоза [2].
Для лучшего понимания реакций расщепления углеводов в организме, рассмотрим более подробно глюкозу, участвующую в этих процессах.
Глюкоза является одним из самых распространенных углеводов в природе, моносахарид, или гексоза С6Н12О6. Второе её название – виноградный сахар. Это растворимое в воде вещество белого цвета, сладкое на вкус. В молекуле глюкозы имеется четыре неравноценных асимметрических атома углерода (рис. 1):
Рис. 1. Строение молекулы глюкозы
Для такого соединения возможно 24 = 16 стереоизомеров, которые образуют 8 пар зеркальных оптических антиподов. Каждое из восьми соединений представляет собой диастереомер (диа – двойной) с присущими только ему физическими свойствами (растворимость, температура плавления и т.д.).
Глюкоза содержится в растительных и живых организмах. Велико ее содержание в виноградном соке, в меде, фруктах и ягодах, в семенах, листьях крапивы. Глюкоза повышает работоспособность мозга, благотворно влияет на нервную систему человека. Именно поэтому в стрессовых ситуациях люди иногда хотят чего-нибудь сладкого. Помимо этого, глюкоза применяется в медицине для приготовления лечебных препаратов, консервирования крови, внутривенного вливания и т.д. Она широко применяется в кондитерском производстве, производстве зеркал и игрушек (серебрение). Ее используют при окраске тканей и кож.
Биохимические реакции расщепления углеводов в организме человека
Для поддержания жизнедеятельности организма используется энергия, скрытая в химических связях продуктов питания. Во многих продуктах питания содержится значительное количество углеводов в виде полисахаридов (сахар, крахмал, клетчатка) и моноз (глюкоза, фруктоза, лактоза и др.). К примеру, в картофеле содержание крахмала составляет до 16 %, в рисе – 78 %, а в белом хлебе – 51 %.
Уже во рту человека начинается процесс расщепления углеводов. Происходит гидролиз крахмала под действием биологического катализатора – фермента амилазы, который содержится в пище. Под действием амилазы молекула крахмала расщепляется на довольно короткие цепочки, которые состоят из глюкозных звеньев. После этого углеводы попадают в желудок. Далее под действием желудочного сока заканчивается кислотный гидролиз крахмала. Крахмал распадается до отдельных глюкозных звеньев. Глюкоза попадает в кишечник и через стенки кишок поступает в кровь, разносящую её по всему человеческому организму.
Содержание глюкозы в крови поддерживается на постоянном уровне при помощи гормона инсулина, который выделяется поджелудочной железой. Инсулин полимеризует избыточную глюкозу в животный крахмал – гликоген, который откладывается в печени. Часть гликогена в печени может гидролизоваться в глюкозу, далее поступающую обратно в кровь. Это происходит при понижении содержания глюкозы в крови. Если поджелудочная железа не может вырабатывать инсулин, содержание глюкозы в крови повышается, что приводит к диабету. Именно поэтому людям, болеющим сахарным диабетом, необходимо регулярно вводить в кровь инсулин.
Молекула глюкозы, попадая в клетку организма, окисляется, «сгорает» с образованием воды и диоксида углерода. При этом выделяется энергия, необходимая организму для движения, согревания, осуществления различных физических нагрузок и т.д. Но биологическое окисление глюкозы похоже на обычное горение лишь по своим конечным результатам. Биологическое окисление – процесс медленный, многоступенчатый. Только малая часть высвобождаемой при окислении энергии превращается на каждой стадии данного процесса в тепло. Значительная доля энергии, заключенной в химических связях глюкозы, расходуется на образование других веществ, из которых важнейшее в биоэнергетике – аденозинтрифосфорная кислота C10H16N5O13P3 (АТФ). Это соединение состоит из трех частей – гетероцикла аденина, рибозы (сахара) и трех остатков фосфорной кислоты, образующей с рибозой сложный эфир (рис.2).
Рис. 2. Структура аденозинтрифосфорной кислоты
АТФ в клетках – универсальная энергетическая валюта. Множество ферментов умеют вести химические реакции, осуществляющиеся с затратой энергии, за счет гидролитического отщепления одного или двух остатков фосфорной кислоты от молекулы АТФ (этот процесс сопровождается выделением энергии), или наоборот, умеют использовать энергию, которая высвобождается в реакциях с выделением энергии для того, чтобы АТФ образовалась. Расщепляя АТФ, клетка использует высвобождаемую энергию на биосинтез различных соединений, а окисляя углеводы – синтезирует АТФ.
Первая стадия «сгорания» глюкозы в клетке – взаимодействие глюкозы с АТФ (рис. 3). При этом АТФ переходит в АДФ (аденозиндифосфат C10H15N5O10P2), а глюкоза – в 6-фосфат. Этот процесс фосфорилирования происходит под действием фермента гексокиназы за счет перенос остатка фосфорной кислоты (H3PO4) от фосфорилирующего агента – донора к субстрату:
Рис. 3. Взаимодействие глюкозы с АТФ
Следующий этап окисления – «рокировка» глюкозофосфата во фруктозофосфат, который происходит под действием фермента изомеразы (рис.4). Рокировка типа глюкоза–фруктоза делает доступным для фосфорилирования еще один гидроксил сахара (т.к. взаимодействовать с АТФ могут только краевые гидроксилы):
Рис. 4. Взаимодействие глюкозо-6-фосфата и фермента изомеразы
После второго фосфорилирования уже под действием другого фермента – фосфорфруктокиназы – получается в итоге фруктозо-1,6-дифосфат (C6H14O12P2 ) (рис.5):
Рис. 5. Взаимодействие фруктозо-6-фосфата и 6-фосфоруктокиназы
Фруктозо-1,6-дифосфат распадается на две части. Получается дигидроксиацетонфосфат ( C3H7O6P ) и глицеральдегид-3-фосфат ( C3H7O6P) (рис. 6).
Рис. 6. Распад Фруктозо-1,6-дифосфата
Клетке нужен только второй продукт, и она с помощью фермента изомеразы превращает первый фосфат во второй (чтобы не было отходов производства) (рис. 7).
Рис. 7. Превращение диоксиацетон-фосфата в глицеральдегид-3-фосфат
На данной стадии в реакцию вступают два соединения: глутатион – соединение, несущее меркаптогруппу SН и никотинамидаденинуклеотид (НАД). НАД легко присоединяет водород: НАД-Н2.
Далее развивается процесс, мало изученный в деталях, но описать его можно пока следующим образом. Под действием НАД и его восстановленной формы, фермента дегидрогеназы и фосфорной кислоты, глицеральдегид-3-фосфат превращается в смешанный ангидрид 3-фосфоглицериновой и фосфорной кислот (рис. 8).
Рис. 8. Превращение глицеральдегид-3-фосфата в смешанный ангидрид 3-фосфоглицериновой и фосфорной кислот
Всё это время энергия только поглощалась, так как АТФ переходил в АДФ. Теперь в реакции будет вступать АДФ, а в продуктах появится АТФ, и энергия будет выделяться. Так, под действием АДФ и фермента фосфоглицераткиназы образуется 3-фосфоглицериновая кислота (рис. 9).
Рис. 9. Образование 3-фосфоглицерата
В ней фермент фосфоглицеромутаза вызывает «рокировку» фосфатной группы в положение 2 (рис. 10).
Рис. 10. Превращение 3-фосфоглицерата в 2-фосфоглицерат
На полученный продукт воздействует фермент енолаза и АДФ – получается пировиноградная кислота (рис. 11, 12).
Рис. 11. Дегидратация 2-фосфоглицерата
Рис. 12. Перенос фосфорильной группы с фосфоенолпирувата на АДФ. Образование пирувата
Процесс превращения глюкозы в пировиноградную кислоту в клетке называется гликолизом [3]. В результате гликолиза клетка получает из одной молекулы глюкозы восемь молекул АТФ и две молекулы пировиноградной кислоты. Превращение глюкозы в пировиноградную кислоту является первой стадией, общей для нескольких процессов. То же самое происходит под действием дрожжей на раствор сахара. Но реакция не закачивается получением пировиноградной кислоты. От этой кислоты отщепляется (под действием фермента декарбоксилазы) молекула диоксида углерода и образуется уксусный альдегид, который, в свою очередь, атакуется ферментом дегидрогеназой и НАД-Н2. В результате при отсутствии кислорода получается этиловый спирт.
На самом деле уравнение этого сложного процесса выглядит довольно просто:
С6Н12О6 à 2С2Н5ОН + 2СО2
Это и есть процесс брожения. В мышцах НАД-Н2 восстанавливает пировиноградную кислоту в молочную. Это происходит при большой нагрузке, когда кровь не успевает подводить кислород в нужном количестве. Поэтому у спортсменов, пробежавших дистанцию, резко увеличивается в крови количество молочной кислоты [4].
Ферменты – это биологические катализаторы, имеющие белковую природу, помогающие ускорить химические реакции как в живых организмах, так и вне их. Ферменты обладают высокой каталитической активностью. К примеру, чтобы расщепить молекулу полиуглевода (крахмал, целлюлозу) или какой – либо белок на составные части, их нужно несколько часов кипятить с крепкими растворами щелочей либо кислот. А ферменты пищеварительных соков (пепсин, протеаза, амилаза) способны гидролизовать эти вещества буквально за несколько секунд при температуре 37 °С. Помимо этого, ферменты обладают избирательностью своего действия в отношении структуры субстрата, условий проведения реакции и её типа (фермент превращает только данный тип субстратов в определенных реакциях и условиях). Ферменты катализируют огромное количество реакций, протекающих в живой клетке при размножении, дыхании, обмене веществ и т.д. [5].
В современном понимании биохимическое расщепление углеводов – это метаболический процесс, при котором регенерируется АТФ, а продукты расщепления органического субстрата могут служить одновременно и донорами, и акцепторами водорода. Огромную роль в биохимических процессах играют микроорганизмы, ферменты и катализаторы. Считается, что анаэробный гликолиз (расщепление углеводов) был первым источником энергии для общих предков всех живых организмов до того, как концентрация кислорода в атмосфере стала достаточно высокой, и поэтому эта форма генерации энергии в клетках – более древняя. За очень редкими исключениями она существует и у всех ныне живущих клеток.
В настоящее время ученые считают, что все реакции биохимического расщепления углеводов на начальной стадии имеют общую схему вплоть до образования пировиноградной кислоты. Затем, в зависимости от условий и качества ферментов, из пировиноградной кислоты образуются конечные продукты реакции: спирты, кислоты (уксусная, лимонная, молочная, яблочная, масляная и т.д.), альдегиды, углекислый газ, водород, вода и пр.
Изучение биохимических реакций расщепления углеводов в организме человека и анализ использованных источников позволили сделать следующие выводы:
1. В общем виде схему механизма расщепления углеводов можно представить следующим образом: сложный углевод (дисахарид, полисахарид) à глюкоза à эфиры фосфорных кислот à глицериновый альдегид à глицериновая кислота à пировиноградная кислота à далее возможны любые упомянутые выше направления.
2. Биохимические реакции углеводов лежат в основе жизнедеятельности клеток живых организмов, в том числе и человека.
3. Биохимические процессы расщепления углеводов, которые изображаются простыми, на первый взгляд, уравнениями начальных и конечных продуктов, на самом деле представляют собой сложные и многоступенчатые процессы.
4. Для осуществления биохимических процессов необходимы ферменты и катализаторы, которые ускоряют реакции расщепления углеводов в тысячи раз.
Изучая сложнейшие процессы, происходящие в живой клетке, ученые задумываются: а нельзя ли, научившись у природы, провести в колбах и ретортах искусственные химические процессы, копирующие биохимические реакции? Начатые по инициативе академика Н.Н. Семенова, такие исследования в области «химической бионики» успешно ведутся в России и во всем мире [6].