геокупол что это такое
Геодезический купол — что это, как изготавливается и в каких областях применяется
Геодезический купол — что это, как изготавливается и в каких областях применяется
Геодезический купол – это архитектурная постройка, которая обладает формой сферы. Как правило, собирается из стержней и балок, из-за чего конструкция обладает хорошими несущими свойствами. Стержни и балки сходятся в определенных местах – узлах, в которых ребра обладают разной длиной. Благодаря этому и получается многогранник, который напоминает сегмент сферы или купол.
Изготовление и монтаж геокупола
Эти полусферические конструкции, как правило, изготавливают по уникальным чертежам, разрабатываемым специально для каждого проекта. Ведь каждый заказчик требует разные размеры и внедрения собственных особенностей, которые будут решать ряд задач. Скорость изготовления проекта зависит от сложности поставленной задачи и профессионализма ответственного за это инженера.
Важно! Хотя компании предлагают приобрести уже готовые проекты геокупола. Кстати, это гораздо дешевле и быстрее.
Если человек решил сделать геодезическое купольное сооружение, то стоит приготовиться к прохождению нескольких этапов реализации этого строения. Сразу стоит отметить: перескакивать с одного этапа на другой нельзя, так как будет теряться качество постройки. Всего можно выделить 8 основных этапов:
Какие бывают виды геодезического купола?
В основном выделяют 3 вида геокупола:
Области применения геодезических куполов
Геокупол используется при возведении разных объектов, благодаря своей прочности, надежности и другим положительным свойствам. Например, в некоторых странах распространено строительство жилых домов с крышей в виде купола. Основным преимуществом таких построек является оригинальный внешний вид, который выделяется на фоне остальных построек. Другим достоинством является большое количество свободного пространства внутри сегмента сферы.
Справка! Первый геокупол был сделан в середине 1926 года инженером Бауэрсфельдом, который разрабатывал этот проект для планетария в Йене.
К тому же в геодезических куполах лучше циркулирует воздух (ведь нет внутри никаких преград), из-за чего сделать качественную вентиляцию гораздо проще, а на обогрев придется меньше тратиться. А если сооружение позволяет установить комплект окон, то это обеспечит красивый панорамный вид, который будет захватывать дух. Кстати, в том числе и по этой причине геокупола получили большое распространение в жилых домах.
Кроме жилых домов, геодезические купола изготавливают для:
Преимущества геодезических куполов
Основные плюсы геокупола:
Недостатки геодезических куполов
Несмотря на очевидные преимущества, есть ряд отрицательных качеств:
Резюмируя
Геодезические купольные помещения еще не сильно распространены, из-за сложности расчетов. Тем не менее, популярность полусферических домов все больше растет. К тому же они доказывают свою эффективность во время землетрясений, ураганов и других стихийных бедствий. Поэтому в дальнейшем геокупола будут все больше и больше распространяться в разных областях: кинотеатры, общественные места, жилые дома и так далее.
Геокупол вместо обычной теплицы: плюсы и минусы решения, варианты реализации с фото
На некоторых садовых участках можно увидеть необычные сооружения в форме полусферы. Это разновидность теплицы, которую называют геодезическим куполом.
Особенности конструкции позволяют создавать специальный микроклимат для растений. А интересный внешний вид постройки служит украшением для приусадебной территории.
Плюсы купольных теплиц
Правильно сконструированный геокупол обладает несколькими преимуществами:
Внутри полусферы воздух равномерно прогревается и свободно циркулирует.
Минусы геокупола
Важный недостаток купольных строений – высокая цена (по сравнению с обычными теплицами), особенно если приобретать уже готовые сооружения.
Самостоятельное возведение обойдется дешевле, но в этом случае можно столкнуться с другой сложностью. Перед постройкой геокупола необходимо правильно провести расчеты, создать чертеж, подготовить материалы. Неопытный строитель легко может допустить ошибки, из-за которых сферическая конструкция не получится.
Иногда после окончания работ возникают проблемы с сохранением внутреннего тепла. Основная причина – некачественно проведенная герметизация стыков и других отверстий.
Еще один минус полусферической теплицы – определенные ограничения при заполнении внутреннего пространства. Например, сложности при установке дополнительных полок.
Некоторые огородники замечают, что под геокуполом быстро растут не только посаженные растения, но и сорняки, поэтому приходится чаще заниматься прополкой.
Варианты конструкций
Каркас изготавливают из дерева, пластика или металла, для покрытия используют полиэтилен, поликарбонат, стекло.
Пленочная теплица – один из бюджетных вариантов.
Эффектности добавит деревянный каркас, но для его создания потребуется много времени и физических усилий.
Самым оптимальным считается покрытие из поликарбоната.
Оно удачно сочетается с любым материалом (удобнее брать металл – с ним проще работать).
Реже для создания каркаса используют пластиковые трубы.
При этом учитывают, что по долговечности и прочности пластик уступает дереву и металлу.
Традиционное сочетание стекла и металла (алюминия или стали) – более дорогостоящий вариант.
За стеклянным покрытием легко ухаживать, оно не теряет с годами своих свойств. Но есть у него и недостатки — хрупкость и высокая теплопроводность.
Трудоемкость и высокая стоимость некоторых строительных материалов – не причины для отказа от возведения подобной конструкции. Всегда можно подобрать бюджетный и несложный вариант купольной теплицы, который так же успешно будет справляться со своими задачами, как и дорогостоящие сооружения.
Геодезический купол. Об устройстве и моем опыте расчетов
Пожалуй сложно назвать геодезические купола чем-то необычным или новым. В этой заметке я расскажу немного об этих конструкциях в общем, об их устройстве, а также покажу на примере как я кое что на эту тему считал. Код тоже будет.
Википедию цитировать не буду. Почему я выбрал купол в качестве дома?
В основе таких конструкций лежит икосаэдр или октаэдр. В общем правильный многогранник.
В моем случае это был именно икосаэдр и чаще используют его. Далее берем одну грань и заменяем ее на несколько треугольников, вершины которых лежат на сфере, центр которой совпадает с центром икосаэдра. Звучит не слишком складно. Отвлечемся.
Есть замечательный калькулятор www.acidome.ru который позволяет в реальном времени покрутить геодезик. Берем в качестве основы icosahedron, ставим частоту 1, часть сферы 1/1.
Это и есть наш основной икосаэдр. Частота это на сколько частей мы разобьем каждое ребро икосаэдра. Ставим 3,4, 5 и ничего становится непонятно. Переключаем в режим кровли и ищем пятиугольники. В тех местах, где у нас вершина икосаэдра — будет пятиугольник. Между тремя пятиугольниками грань икосаэдра.
Если внимательно смотреть на геодезик и знать, что искать (обычно пятиугольник), то становится видна регулярность структуры. На Биосфере в Монреале при должном усердии можно найти пятиугольники и посчитать частоту. Частота у нас равна количеству ребер между двумя пятиугольниками.
Сами “большие” треугольники, с вершинами на вершинах икосаэдра также имеют структуру. На acidome в режиме кровли это видно по цвету. Треугольники расположены симметрично относительно центра “большого” треугольника. Количество их типов меньше общего числа треугольников. В случае с частотой 5 уникальных треугольников 9.
В процессе проектирования дома я столкнулся с задачей постройки сферы в Dynamo. Это такой инструмент, который позволяет научить Autodesk Revit работать со сложными формами. Такая среда визуального программирования.
Погуглив я даже нашел скетч, который в Dynamo строил геодезическую сферу. Сферу то он строил, да не ту.
Дело вот в чем. Когда мы берем одно ребро икосаэдра и делим его на мелкие треугольники — сделать это можно несколькими способами. В acidome за это отвечает переключатель “метод разбиения”.
Найденный скетч строил сферу методом равных хорд. Что это значит? Мы берем большой треугольник икосаэдра, каждое его ребро делим на нужное нам количество частей, соединяем точки на ребрах между собой и получаем плоскую сетку из треугольников. Затем эту сетку мы проецируем на сферу. Все бы хорошо, но сами эти треугольники достаточно сильно отличаются по размеру. Центральный больше всех. Оно и понятно, центр “большого” треугольника у нас на максимальном расстоянии от сферы. Это плохо, так как в этом случае сложнее оптимизировать расход материалов. Будет больше отходов.
Другой метод разбиения (равными дугами) предполагает, что мы строим поверх “большого” треугольника дуги и уже их делим на равные части. Подход отличается, простой проекцией не обойтись.
Скетч не подходил. Я попытался его исправить и в итоге мне пришлось нырнуть в это дело с головой.
Как оказалось помимо визуальной среды Dynamo имеет встроенный Python. С этим языком я ранее не сталкивался, но где наша не пропадала? В конце концов это просто инструмент.
Дальше будут кусочки кода, прошу обратить внимание, что это мой hello world в python, а целью было не построить максимально эффективное и производительное решение, а построить нужную сферу.
Метод равных дуг.
Берем одну из граней икосаэдра и из углов этого треугольника строим дуги.
Затем дуги делим на равные части и соединяем точки на дугах новыми дугами. У всех дуг один центр — центр сферы. Точки соединяем не все со всеми, а одноименные. На картинке оно выглядит попроще, чем в коде.
Опа, а дуги то не пересекаются! Не слишком беглое гугление вывело меня на книгу, которая подтвердила мои предположения о том, что нужно в качестве вершины ребра геодезика использовать центр треугольника, образованного пересечением дуг. Также курил исходники acidome, но не помню нашел ли там этому подтверждение. Помню, что было интересно.
Центры надо как-то найти. Это центр треугольника и это не сложно, но нужно было понять где же у нас в ворохе точек эти треугольники. Мне показалось самым простым вариантом соединять ближайшие друг к другу точки.
Теперь нам нужно соединить между собой собранные на разных этапах точки, которые и являются вершинами ребер геодезической сферы. На картинке эти точки видно хорошо, но вот когда они в массиве — все сложнее. Было несколько вариантов, но так как задача была с наименьшими трудозатратами получить рабочий скрипт, вышло вот это:
Сегмент готов. Наверное существует какой-то правильный путь для решения этой задачи, но я проложил свой.
Дальше сегмент разворачивается, несколько раз копируется копируется и получается полная сфера. Вот один из поворотов:
Скриптик вышел страшненький, я его пару раз переписывал, так как были проблемы с экспортом в Revit. Думал, что проблемы с построением. В итоге на форуме Dynamo индус подсказал украинцу и все удалось!
Теперь можно строить сферу любой частоты и любого диаметра. Сравнение размеров с результатами acidome показало, что все сходится с высокой точностью. Повторяемость это хорошо.
Также я занялся оптимизацией размеров с целью минимизации обрезков. Так как все размеры были у меня на руках это было не так трудно. В итоге радиус сферы получился 5,65 метров при частоте 5. Такие размеры позволяют мне достаточно эффективно использовать материалы шириной 125 см. Такую ширину имеют листы OSB, листового металла, утеплителя, гипсокартона. При хорошей оптимизации количество обрезков минимально. Наилучших результатов можно добиться путем расчета раскладок треугольников на материале, но этим я не занимался.
Дальше было проще, так как Revit съел сложную форму и позволил с ней работать примерно с тем же успехом, что и с квадратно-параллельной.
Конечно, трудности на этом не закончились, но это уже совсем другая история.
Купольный дом: своими руками
Выбираете энергоэффективные решения?
Обратите внимание на геотермальные тепловые насосы FORUMHOUSE
Геотермальный тепловой насос EU (старт/стоп)
Геотермальный тепловой насос IQ (псевдоинвертор)
Геотермальный тепловой насос IQ (инвертор)
За последние годы купольные дома в нашей стране из разряда экзотики перешли в категорию необычных строений. Их владельцы уже воспринимаются не как застройщики, просто решившие выделиться на фоне типовых коттеджей, а как люди, сделавшие осознанный выбор подобной конструкции.
Но массовому распространению купольных домов, как обычно, мешают стереотипы и недостаток практической информации по конструктиву подобных сооружений. Поэтому в этой статье мы расскажем:
Отличие стратодезического купольного дома от геодезического
Как показывает практика, люди, впервые увидевшие или узнавшие про купольные дома, чаще всего делятся на две категории. Это — те, кто безоговорочно принимает такую форму дома и, отметим, образ жизни, и те, кто считает подобные сооружения причудой или, как вариант, — домом не под ПМЖ, а летней дачей «не как у всех».
Не будем вдаваться в подробности обсуждения достоинств и недостатков купольных домов (а они, как и у любой строительной технологии, есть) и сконцентрируемся на практике. Итак, есть застройщик, желающий построить купольный дом. С чего начать? Отличный пример грамотного и обстоятельного подхода — история пользователя портала с ником Rustad.
Я решил построить купольный дом относительно небольшой площади, около 100 кв. м, под Санкт-Петербургом. Участок идёт под наклоном. Дом преимущественно будет использоваться летом с нечастыми заездами зимой. Возводить буду геодезический купольный дом по бесконнекторной технологии. Подобное сооружение является точной математической моделью. Строить его без расчёта и проекта нельзя, т.к. погрешность при сборке каркаса и при изготовлении деталей не должна превышать 1 мм. Если не соблюсти это правило, то при накоплении косяков каркас «уйдёт».
Прежде чем мы расскажем о нюансах проектирования и строительства дома, представленного на фото ниже, ответим на вопрос, который одним из первых возникает перед любым человеком, задумавшим возвести купольный дом.
Чем отличается стратодезический купольный дом от геодезического? Не вдаваясь в детальное описание технологии, скажем, что ключевое отличие заключается в способе возведения каркаса.
Стратодезический купол возводится из стоек, например, изготовленных из гнутоклееных деревянных балок, а этапы его сборки во многом напоминают обычную технологию каркасостроения.
Геодезический купол возводится несколько иначе. Сначала изготавливаются отдельные секции, например, в виде треугольников, которые затем, шаг за шагом, соединяются друг с другом.
При сборке рёбер (секций) геодезического купола может применяться технология коннекторного соединения (например, при помощи металлического коннектора).
Или (менее распространённая в России) бесконнекторная технология.
Rustad остановился на последнем варианте и, как мы уже говорили выше, начал с разработки проекта.
Строить купольный дом без проекта или что-то нацарапав карандашом на листке бумаги — занятие бесперспективное. На опыте знакомых могу сказать, что это всегда приводит только к одному — переделкам и бесконечной перестройке того, что получилось. Также не панацея — отдать проект на откуп дизайнеру.
Дизайнер может красиво нарисовать, но с точки зрения практики то, что он создал, зачастую просто невозможно воплотить в жизнь. Проектировать дом должен человек с профильным образованием, но даже инженер-проектировщик может не учесть положение строения на участке относительно сторон света, розу ветров, размеры отделочных материалов. Поэтому Rustad, имея в распоряжении два свободных месяца, засел за проектирование купольного дома, и вот что в итоге у него получилось.
Отметим, что проект за это время несколько раз видоизменялся с учетом рекомендаций опытных строителей, доступности материалов, особенностей расстановки мебели и внесением пожеланий от домочадцев.
Этапы возведения геодезического купольного дома
Закончив этап проектирования купольного дома, Rustad перешёл к его возведению. Сразу приведём несколько рекомендаций пользователя, касающихся организации строительства.
Дом я хотел возвести в кратчайшие сроки, поэтому привлёк помощников — одного человека, хорошо разбирающегося в особенностях каркасного строительства и подсобника. Скажу сразу, да, это — лишние расходы, но если бы я строил дом в одиночку, у меня бы на это ушло 3 летних сезона. При этом добиться качественной работы, скорее всего, не удалось бы. Т.к. чисто физически, невозможно одному удержать на весу узлы (рёбра каркаса) и при этом скреплять их друг с другом. При сборке всё время приходится что-то стягивать или отгибать. Вторая и третья пара рук жизненно необходимы. Иначе — накопление ошибок от ряда к ряду и, как следствие, «косяк» с верхним контуром.
По словам пользователя, он руководил строительством, а его личный — физический вклад, составляет около 30%. Пригодился и опыт мастера (чтобы избежать ошибок) каркасостроителя. Также значительно увеличилась скорость сборки контура, т.к. 2 человека делают работу в 4 раза быстрее, чем 1, а 3 человека «проворачивают» тот же объём работ быстрее уже в 8 раз.
Поэтому вся стройка разбивается на ряд последовательных этапов, каждый из которых требует тщательного контроля.
1. Возведение фундамента под купольный дом.
Участок находится на склоне. Угол наклона около 12 градусов. В качестве фундамента Rustad выбрал свайно-винтовой. Свайное поле состоит из 24 свай размером:
Сваи закрутили за 2 дня, провозившись до ночи. Пользователь отмечает, что, доверившись бригадиру рабочих, он сам не разметил свайное поле.
В итоге: несколько свай оказались не там, где находятся узлы дома. Для исправления ошибки пришлось наваривать «16-й» швеллер.
2. Изготовление каркаса: рёбер, стоек и стропил.
Для каркаса закупили зимний лес и заранее нарезали все заготовки в размер на торцовочной пиле, в соответствии с проектом.
На это у пользователя ушло 4 выходных дня.
3. Сборка купольного дома.
Строительство дома началось в апреле. Погода стояла, мягко говоря, «не лётная»: то дождь, то снег, то ветер.
Возведение купольного дома началось с монтажа райзера (цилиндрического основания).
Райзер набирали из треугольников, чтобы дом выглядел, как единое целое.
На этом этапе возник вопрос, как сделать вынос под террасу. Крутить сваи под каждую лагу пользователь не хотел — получилось бы одно сплошное свайное поле. Это экономически невыгодно, а кроме этого, терраса смотрелась бы некрасиво.
Rustad решил изготовить террасу в виде «балкона» — вылета, являющегося продолжением пола первого этажа. Осталось подобрать материал, который выдержит такую нагрузку.
Когда я занялся этим вопросом и обратился на фирмы, то мне рекомендовали сделать вынос из двутавровых клееных деревянных балок. Сравнив эти балки (стенка из ОСП толщиной 18 мм) с LVL брусом, сечением 51х300 мм, я не увидел особой экономической выгоды в приобретении двутавра, а сомневаться в прочности и несущей способности LVL бруса не приходится. Его и поставил.
Смонтировав лаги, на них настелили временный пол из досок, т.к. погодные условия не позволяли сделать нормальный.
Далее приступили к сборке купола.
На сборку купола (в снег, сильный ветер и ливень) ушло 2 дня.
Важный нюанс: чтобы скрепить между собой рёбра и балки, пользователь использовал конструкционные саморезы 6х140 мм.
В отличие от обычных саморезов (особенно т.н. калёных «чёрных», которые не выдерживают динамических нагрузок и ломаются), конструкционный саморез можно согнуть в дугу, и он не лопнет. Специальная насечка прорезает, а не раздвигает волокна древесины, поэтому саморез можно ввернуть в сучок или в край доски, и она не треснет.
Также саморез прочнее обычных, а головка «звездочка» не позволяет бите сорваться и срезать грани, что упрощает завинчивание.
Инженерные коммуникации – трубы водопровода, электрические кабели провели в полу.
Ящик с электроавтоматикой также собрали в соответствии с проектом в домашней обстановке и разместили в «цоколе».
Следующий этап – обшивка собранного купола влаго- и ветрозащитной мембраной, с обязательной проклейкой нахлестов специальным скотчем. Набивка обрешётки под вентиляционный зазор. Монтаж ОСП (основы под гибкую черепицу).
Важный нюанс: обшивка купола делалась из выкроек (треугольников) из листов OSB-3, толщиной 18 мм, размерами 1220х2440 мм.
Такой гвоздь очень хорошо держит. Вырвать можно только с «мясом», а забивается он быстрее, чем крутить саморезы.
Далее: основание из ОСП закрыли подкладочным ковром и всё промазали битумной мастикой.
Сделав внешний контур, строители приступили к утеплению пола. В пол задули эковату слоем в 30 см, использовав для этого самодельную установку на базе садового пылесоса и пластиковой бочки.
После утепления пол застелили листами влагостойкого ГСП (гипсо-стружечными плитами) толщиной 12 мм, уложив их в 2 слоя.
Смонтировав основание, перешли к утеплению стен. Для этого использовали синтетический нетканый материал (утеплитель) толщиной 5 см, уложив его в 3 слоя.
С этим видом утеплителя приятно работать. Он не колется, не боится влаги, легкий. Только резать ножом трудно, лучше использовать ножницы или специальный электрорезак для ковров. И добавлю: лучше не ставить на утеплитель тяжелые предметы, а также не складировать рулоны в высоту. Утеплитель может не восстановить форму после снятия нагрузки. Лучше действовать по такому алгоритму – привезли и сразу укладываем.
Утеплив стены, по каркасу натянули пароизоляцию и также зашили всё гипсо-стружечными плитами, но только толщиной в 10 мм.
На этом этапе дом уже приобрёл законченный вид. После возведения перегородок начался монтаж инженерных систем и отделочные процессы.
Сюда вошли следующие работы:
Снаружи наколотили гибкую черепицу.
Райзер обшили имитацией бруса.
Навес закрыли сотовым поликарбонатом, толщиной в 10 мм.
Приступили к отделке комнат и санузла.
Смонтировали дренажную систему и систему автономной канализации.
Сколько стоит построить купольный дом
По словам Rustad, его строение сломало стереотипы людей, живущих в посёлке. Настолько необычным, оригинальным и запоминающимся выглядит купольный дом. Люди, чтобы посмотреть на сооружение, приезжают «на экскурсию» со всего района и привозят родственников из города. Причём, когда строение только начали возводить, сельчане терялись в догадках, что же это будет. Слухи ходили, что пользователь строит обсерваторию, библиотеку, но меньше всего думали, что это будет жилой дом.
Когда я только задумал строительство купольного дома, то проехал по фирмам, у которых на сайтах написано, что они строят подобные сооружения. Вывод из этих поездок неутешительный — никто толком таких домов не строит. Цель на «фирме» одна — заманить клиента и переубедить его на строительство обычного каркасника. Становиться подопытным я не захотел, поэтому взял всё в свои руки. Причём, дом я построил по малораспространённой в России технологии — бесконнекторного соединения. Как уже говорилось выше – для подобного строительства нужен хотя бы 1 помощник. Проект обязателен! Допустимая погрешность деталей каркаса +/- 1-2мм для дерева, +/-0.5мм для металла.
Дом начали строить 28 апреля и закончили (под чистовую отделку) 4 июня. Всего за это время потратили 1.6 млн руб., при проектной стоимости в 950 тыс. Но в эту цену входят расходы, которые нельзя напрямую отнести к «коробке», или они претерпели изменения на стадии строительства. Это:
Подведение итогов
Купольные дома приобретают всё большее количество поклонников. Кто-то хочет построить необычный дом для «вау»-эффекта. Кому-то нравится сама философия жизни в купольном доме (а она отличается от жизни в обычном коттедже). Кто-то просто хочет испытать себя и попробовать свои силы в строительстве. Четвёртых подкупает особая атмосфера большого пространства, скорость и относительная дешевизна строительства и экономичность (в плане отопления) грамотно построенного купольного дома.
Те, кто только раздумывает о строительстве купольного дома и хотел бы узнать больше о проекте Rustad, а также задать строителю интересующий его вопрос, может ознакомиться с темой купольный дом на склоне. V4 D9.4.
На FORUMHOUSE есть статьи, где рассказывается об этапах строительства необычного каменного дома с круглой крышей и приводятся рекомендации, как изготовить гнутую стропильную систему для полукруглой и стрельчатой крыши.
Также советуем посмотреть видео — круглый дом: конструкция стратодезического купола и дом-геосфера, где рассказывается о нюансах возведения геодезического купольного дома.